and:

$$k'_{I} = \omega \left(\frac{\mu}{2T}\right)^{1/2} \left[-1 + \sqrt{1 + \left(\frac{b}{\mu\omega}\right)^{2}} \right]^{1/2}$$

Now since:

$$y(x,t) = y_o e^{i(\omega t - k'x)} = y_o e^{i\omega t} e^{-ik'x} = y_o e^{i\omega t} e^{-i(k'_R - ik'_I)x} = y_o e^{i\omega t} e^{-ik'_R} e^{-k'_I x} = y_o e^{i(\omega t - k'_R x)} e^{-k'_I x}$$

we see that the amplitude of the transverse displacement, y(x,t) associated with a right-moving transverse traveling wave on the string, vibrating in a viscous, dissipative medium will be attenuated to 1/e of its initial value (here assuming the wave originates at x = 0) in a characteristic distance $x = 1/k'_1$. We therefore define this characteristic damping distance as the so-called attenuation length, $\lambda_{atten} \equiv 1/k'_1$:

$$\lambda_{atten} \equiv \frac{1}{k'_{I}} = \frac{\frac{1}{\omega} \left(\frac{2T}{\mu}\right)^{1/2}}{\left[-1 + \sqrt{1 + \left(\frac{b}{\mu\omega}\right)^{2}}\right]}$$

The *phase speed*, v'_x (= longitudinal propagation speed) of this viscously damped right-moving traveling wave is no longer $v'_x = T/\mu$, because of the presence of damping. It is now $v'_x = \omega/k'_R$. Note that when b = 0 (i.e. no viscous damping of the string) then k = k'_R = ω/v_x (since then $v'_x = v_x = (T/\mu)^{\frac{1}{2}}$), and k'_I = 0. Thus,

$$v'_{x} = \frac{\omega}{k'_{R}} = \frac{\left(\frac{2T}{\mu}\right)^{1/2}}{\left[1 + \sqrt{1 + \left(\frac{b}{\mu\omega}\right)^{2}}\right]^{1/2}}$$

Thus, we see that in the presence of viscous damping (b \neq 0) the phase speed/longitudinal wave speed, v'_x < v_x = (T/ μ)^{1/2}.

The characteristic damping time, $t = \tau_{damp}$ in which the amplitude of the transverse wave is exponentially damped to $1/e = 1/e^{+1} = e^{-1} = 1/2.71828 = 0.36788$ of its initial value is given by:

$$\tau_{damp} = \frac{\lambda_{atten}}{v'_{x}} = \frac{\frac{1}{k'_{I}}}{\frac{\omega}{k'_{R}}} = \frac{1}{\omega} \left(\frac{k'_{R}}{k'_{I}}\right) = \frac{1}{\omega} \frac{\left[1 + \sqrt{1 + \left(\frac{b}{\mu\omega}\right)^{2}}\right]^{1/2}}{\left[-1 + \sqrt{1 + \left(\frac{b}{\mu\omega}\right)^{2}}\right]^{1/2}}$$

Note that this damping time is valid not only for transverse traveling waves, but also for transverse standing waves. If the amount of viscous damping is small, i.e. $b \ll \mu\omega$, then using the Taylor series expansion $(1+\epsilon)^{\frac{1}{2}} \cong 1+\frac{1}{2\epsilon}$ for $\epsilon \ll 1$, the damping time, τ_{damp} is: