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     Suppose the string with tension, T has a rigid, fixed end support at x = 0, but at x = L, this end 
support is not completely rigidly fixed, but instead, this end support behaves as if it is quasi-free, 
with a finite mass, M. Note that a perfectly rigid, fixed end support can be thought of as having 
infinite mass, M = . Then as the string vibrates transversely, for small-amplitude vibrations, it 
will exert a transverse force, Fy (t)  T (y(x=L, t)/x) on this quasi-free end support at x = L, 
of mass, M. By Newton’s second law (F = Ma), we have: 
Note that the acceleration, a of the mass, M at the end support located at x = L is the same as the 

transverse acceleration of the string, ay(x=L) = 2y(x=L,t)/t2 at this end support. This force will 
in general be complex. 
 
The (complex) transverse displacement of the string at an arbitrary point, x along its length, L at 
a given time, t is again given by: 
 

 
with yoR = |yoR|ei and yoL = |yoL|ei.We apply the fixed-end boundary condition at x = 0, namely 
that y(x=0,t) = 0, where: 
 

 
This can only be satisfied for any/all time(s) t, if yoR = yoL. Then the transverse displacement, 
y(x,t) of the string, for an arbitrary point, x and time, t is: 
 

 
Then: 

 
and: 

and: 
 

 

Inserting these relations into the above force relation at x = L, we have: 
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