Snapshots of the transverse displacement, y(x,t) vs. position, x for a right-moving sinetype harmonic traveling wave are shown in the figure below, for t = -5, 0 and +5 seconds. The transverse displacement, $y(x, t) = A \sin(kx - \omega t) = A \sin[2\pi(x/\lambda - ft)]$, with amplitude, A = 1.0 m, wavelength, $\lambda = 4.0 m$, longitudinal velocity $v_x = +1.0 m/sec$ and thus $f = |v_x|/\lambda = 1/4 = 0.25 Hz$.

Y(x,t) = A sin[kx-wt] vs x

The three sinusoidal curves in this figure may seem a bit confusing at first glance. Consider the crest at $x (t = -5 \ sec) = -8.0 \ m$ associated with the snapshot of the dark blue sinusoidal traveling wave at $t = -5 \ sec$. Five seconds later, this crest (along with the rest of the sinusoidal traveling wave) has propagated to the *right*, a distance of $\Delta x = |v_x|\Delta t = 1 \ m/sec^*5 \ sec = 5.0 \ m$. Thus, this same crest is now located at $x (t = 0 \ sec) = -8.0 + 5.0 \ m$ = -3.0 m. This is the crest located at $x(t = 0 \ sec) = -3.0 \ m$ on the magenta curve. Five seconds after this, at $t = +5.0 \ sec$, this same crest has propagated to the *right* another distance of $\Delta x = |v_x|\Delta t = 1 \ m/sec^*5 \ sec = 5.0 \ m$. This crest is now at $x(t = +5 \ sec) = -3.0 + 5.0 \ m = +2.0 \ m$, *i.e.* the crest located at $x(t = +5.0 \ sec) = +2.0 \ m$ on the yellow curve.

The transverse *velocity*, $u_y(x,t)$ of a sine-type harmonic traveling wave can be obtained from the transverse *displacement*, y(x, t). Since velocity (units = m/sec) is the *change* of position per unit *change* in time, the transverse velocity, $u_y(x,t)$ is the *derivative*, d/dt of position with respect to time. Then $u_y(x,t) = d/dt (y(x,t)) = dy(x, t)/dt = d/dt(A sin[kx-\omega t])$ $= -\omega A cos[kx-\omega t]$, since the derivative, d/dt of the sin(u(t)) function is d/dt(sin u(t)) = $d(sin(u(t))/dt = cos u^* du(t)/dt$, by the *chain-rule of differentiation*, where $u(t) = [kx-\omega t]$, thus $du(t)/dt = -\omega$. Snapshots of the transverse velocity, $u_y(x, t)$ as a function of position, x, for t = -5, 0 and +5 seconds are shown in the figure below. Again, for the crest of $u_y(x = -7.0 m, t = -5 sec)$ at x(t = -5 sec) associated with the snapshot of the dark blue sinusoidal traveling wave at t = -5 sec, after 5 seconds, at t = 0 sec, this crest associated with the dark blue $u_y(x,t)$ curve has also propagated to the right a distance $\Delta x = |v_x|\Delta t = 1$ $m/sec^*5 sec = 5.0 m$. Thus, the velocity crest is now at x(t = 0 sec) = -7.0 + 5.0 = -2.0 m, on the magenta curve; and another $\Delta t = 5$ seconds later, this velocity crest is at +3.0 m on the yellow curve.