The time-averaged power, $\langle P(t) \rangle$ associated with the nth normal mode of vibration of the entire string, of length, *L* in a standing wave is given by

$$
\left\langle P_n(t)\right\rangle = \frac{1}{\tau_n} \left[\left\langle KE_n(t) \right\rangle + \left\langle PE_n(t) \right\rangle \right] = \frac{1}{\tau_n} \left\langle E_n(t) \right\rangle = \frac{1}{\tau_n} \left[\frac{1}{8} m \omega_n^2 C_n^2 \right] = \frac{1}{2} P_n
$$

Here again, the time-averaged power, $\langle P_n \rangle$) associated with the *n*th normal mode of vibration of the entire string, of length, *L* is *not* the same as the instantaneous power, *Pn* because of how it is defined - the time averages of the kinetic and potential energy for each mode, $\langle KE_n(t) \rangle$ and $\langle PE_n(t) \rangle$ are carried out *separately*. Thus, P_n is also known as the *peak* power, while $\langle P_n \rangle = \frac{1}{2} P_n$ is known as the *root-mean-square*, or *rms* power.

 If there are many normal modes of oscillation present as standing waves on a string, then the total power, P_{tot} summing over all modes is given by:

$$
P_{tot} = \sum_{n=1}^{n=\infty} P_n = \sum_{n=1}^{n=\infty} P_n(t) = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n}\right) \left[KE_n(t) + PE_n(t)\right] = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n}\right) \left[\frac{1}{4}m\omega_n^2 C_n^2\right] = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n}\right) E_n
$$

The time-averaged total power, $\langle P_{\text{tot}} \rangle$ summing over all modes is given by:

$$
\langle P_{\text{tot}} \rangle = \sum_{n=1}^{n=\infty} \langle P_n(t) \rangle = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n} \right) \Big(\langle KE_n(t) \rangle + \langle PE_n(t) \rangle \Big) = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n} \right) \Big[\frac{1}{8} m \omega_n^2 C_n^2 \Big] = \sum_{n=1}^{n=\infty} \left(\frac{1}{\tau_n} \right) \langle E_n \rangle
$$

Note that the time-averaged total power, $\langle P_{tot} \rangle$ is *not* the same as the instantaneous power, *Ptot* because of how it is defined - the time averages of the kinetic and potential energy for each mode, $\langle KE_n(t) \rangle$ and $\langle PE_n(t) \rangle$ are carried out *separately*. Thus, P_{tot} is also known as the *peak* total power, while $\langle P_{tot} \rangle = \frac{1}{2} P_{tot}$ is known as the *root-mean-square*, or *rms* total power.

Exercises:

- 1. On a sheet of graph paper, draw an arbitrarily-shaped waveform, $y(x, t) = f(x y_x t)$ representing the transverse displacement, $y(x, t=0)$ of a right-moving traveling wave along the *x*-axis at time $t = 0$ - *e.g.* a triangular-shaped pulse. Having chosen the amplitude, y_0 and longitudinal velocity, v_x of this traveling wave, draw where this waveform is *e.g.* when $t = 1$ second, $t = 5$ seconds, and/or $t = 10$ seconds. Verify that $(x - v_{xt}) = constant = K$ for a given point on the waveform for each choice of time, t.
- 2. On a sheet of graph paper, draw an arbitrarily-shaped waveform, $y(x, t) = f(x + v_xt)$ representing the transverse displacement, $y(x, t=0)$ of a left-moving traveling wave along the *x*-axis at time $t = 0$ - *e.g.* a triangular-shaped pulse. Having chosen the amplitude, y_0 and longitudinal velocity, $-v_x$ of this traveling wave, draw where this waveform is *e.g.* when $t = 1$ second, $t = 5$ seconds, and/or $t = 10$ seconds. Verify that $(x + v_xt)$ = constant = *K*' for a given point on the waveform for each choice of time, *t*.