Note that the last term on the right hand side of the above equation used the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$. Thus, we discover that the total energy, $E_n(t)$ of the standing wave associated with the nth normal mode of vibration of the entire string, of length, *L* as a function of time, *t* is a *constant* - the total energy, $E_n(t) = E_n$, *i.e.* it has no time dependence! Note also that the potential energy, kinetic energy, and total energy of the standing wave for the nth normal mode of vibration all vary as the square of the frequency, since $\omega_n = 2\pi f_n$, and as the square of the amplitude, C_n , and depend linearly on the total mass, *m* of the string of length, *L*.

The potential energy, $PE_n(t)$ kinetic energy $KE_n(t)$ and total energy $E_n(t)$ associated with the nth normal mode of vibration of the entire string, of length, *L* as a function of time, *t* are shown in the figure below. The values used for making this plot were $m = 1.0$ kg ($L = 10$ *m*), $n = 1$, $\tau_1 = 10.0$ *sec*, $f_1 = 1/\tau_1 = 1/20$ Hz , $|v_x| = 1.0$ *m/s* ($\lambda_1 = 2L = 20$ *m*), and $C_1 = 1.0 \, m$.

KE(t), PE(t) and Etot(t) vs. Time, t

At one instant in time, say at $t = 0$ sec in the above figure, when the transverse displacement of the string is a maximum, with zero transverse velocity - the total energy of the string is all in the form of potential energy. One-quarter of a cycle later at *t* = 5 *sec*, when the string has maximum transverse velocity, the transverse displacement, $y_n(x,t=5)$ $= 0 =$ the equilibrium position of the string, and here the total energy of the string is all in the form of kinetic energy. Another one-quarter of a cycle later, at $t = 10$ sec, the transverse displacement of the string is again at a maximum (but is now on the *opposite* side of the equilibrium position, $y_n(x,t=5) = 0$), with zero transverse velocity, the total energy of the string is again all in the form of potential energy. One further quarter of a cycle later, at $t = 15$ *sec*, the string has again zero transverse displacement, $y_n(x,t=15) = 0$, but again has maximal transverse velocity, and again the total energy of the string is all in the form of kinetic energy. A further quarter of a cycle, at $t = 20$ sec, the string is back where it originally started, with maximum transverse displacement, again with zero