where C_n is the amplitude of the *n*th normal mode of vibration, and δ_n ($\delta_n' = \delta_n + 90^\circ$) is its phase, respectively.

Wave Energy

 As mentioned earlier, a wave e.g. on a string has associated with it energy, E and momentum, *P*. If we consider an infinitesimally small segment of string, of equilibrium length, Δx , then for small-amplitude vibrations, the mass associated with this string segment is $\Delta m = \mu \Delta x$. The transverse velocity of this string segment is $u_y(x,t)$. The *kinetic* energy (in *Joules*) associated with this string segment, located at the point *x* along the string and at time *t* is given by:

$$
\Delta KE(x,t) = \frac{1}{2} \Delta p_y^2(x,t) / \Delta m = \frac{1}{2} \Delta m u_y^2(x,t) = \frac{1}{2} \mu \Delta x u_y^2(x,t)
$$

Transverse momentum and transverse velocity of a given string segment are related to each other by $\Delta p_y(x,t) = \Delta m u_y(x,t)$. The kinetic energy, $\Delta KE(x,t)$ associated with a vibrating string segment is a maximum when the magnitude of the transverse velocity, $|u_y(x,t)|$ of the string segment is a maximum. For sinusoidal-type transverse waves on a string, this occurs when the transverse displacement of the string segment, $y(x,t) = 0$.

We can obtain the total kinetic energy associated with the entire vibrating string at a given instant in time, *t* by summing up (*i*.*e*. adding) all of the individual kinetic energy contributions associated with each infinitesimal string segment, over the entire length of the string:

$$
KE(t) = \sum_{n=1}^{N} \Delta KE(x, t) = \frac{1}{2} \mu \sum_{n=1}^{N} \Delta x \ u_{y}^{2}(x, t)
$$

In the limit that the lengths of individual string segments, Δx become truly infinitesimal, then $\Delta x \rightarrow dx$, and the above summation formally becomes an integration over the length of the string, say from $x = 0$ to $x = L$:

$$
KE(t) = \frac{1}{2} \mu \int_{x=0}^{x=L} dx \ u_y^2(x,t) = \frac{p_y^2(t)}{2m}
$$

The *potential* energy, $\Delta PE(x,t)$ (in *Joules*) of an infinitesimal string segment of length, Δx of the vibrating string is associated with the (elastic) *stretching* of the string, under tension, *T* from its equilibrium position, $y(x,t) = 0$, to its transversely displaced position, $y(x,t) \neq 0$. (At the atomic level, the macroscopic stretching of the string corresponds to atoms making up the string material stretching apart from each other by very small distances, a fraction of an Angstrom ($1 \hat{A} = 10^{-10} \hat{m}$). Typical inter-atomic separation distances are on the order of \sim few Angstroms.) The displacement amplitude is again assumed to be very small, such that although the string stretches elastically, the string tension, *T* remains constant. Then the potential energy, $\Delta PE(x,t) = T\Delta L$, where ΔL is the *elongation* (*i*.*e*. stretching) of the infinitesimal string segment, as shown in the figure below: