The boundary condition, $y_{tot}(x=L, t) = 0$ for the fixed end at x = L, which *must* be obeyed for *any* time, *t*, can *only* be satisfied if

$$y_{tot}(x = L, t) = A\sin(kL - \omega t) + B\cos(kL - \omega t) + C\sin(kL + \omega t) + D\cos(kL + \omega t) = 0$$

However, because of the requirement from the boundary condition $y_{tot}(x=0, t) = 0$, that the amplitudes C = A .and. B = -D, this can be rewritten as:

$$y_{tot}(x = L) = A[\sin(kL - \omega t) + \sin(kL + \omega t)] + B[\cos(kL - \omega t) - \cos(kL + \omega t)]$$

Using the angle-addition formulae:

$$\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$$

and

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

then:

$$y_{tot}(x = L, t) = A[\sin(kL)\cos(\omega t) - \cos(kL)\sin(\omega t) + \sin(kL)\cos(\omega t) + \cos(kL)\sin(\omega t)] + B[\cos(kL)\cos(\omega t) + \sin(kL)\sin(\omega t) - \cos(kL)\cos(\omega t) + \sin(kL)\sin(\omega t)]$$

which becomes:

$$y_{tot} (x = L, t) = 2A\sin(kL)\cos(\omega t) + 2B\sin(kL)\sin(\omega t)$$
$$= 2[A\cos(\omega t) + B\sin(\omega t)]\sin(kL)$$

The *only* way that the boundary condition, $y_{tot}(x=L, t) = 0$ for the fixed end at x = L can be satisfied for *any* time, *t* is if sin(kL) = 0. This happens when $kL = n\pi$, where *n* is a positive integer, *i.e.* $n = 1, 2, 3, 4, \dots$ *etc.* Then $sin(n\pi) = 0$, and hence $y_{tot}(x=L, t) = 0$ is satisfied for any time *t*. Since $k = 2\pi/\lambda$, the case n = 0 is not allowed, since the distance between end supports, *L* is finite, and n = 0 corresponds to $\lambda = \infty$. Physically, the requirement that the transverse displacement at x = L be zero is the same requirement as that for the transverse displacement at x = 0.

Note that the relation $kL = 2\pi L/\lambda = n\pi$ implies that $\lambda = 2L/n - i.e.$ that the allowed wavelengths associated with transverse waves propagating on this string of length *L* between the fixed endpoints x = 0 and x = L, can only be integer fractions of the total length, *L* of the string! We can denote these special wavelengths, λ and wavenumbers, *k* by the subscript n, i.e. $\lambda_n = 2L/n$ and $k_n = n\pi/L$, n = 1, 2, 3, 4, etc. Since the longitudinal wave speed, $|v_x| = f\lambda = \omega/k$, then $f = |v_x|/\lambda_n = n|v_x|/2L$; we can denote these special frequencies, *f* and angular frequencies, $\omega = 2\pi f$ as $f_n = n|v_x|/2L$ and $\omega_n = n\pi|v_x|/L$, n = 1, 2, 3, 4, etc.

Thus, we discover that only *certain* wavelengths, corresponding to *certain* frequencies of sinusoidal-type transverse waves are able to propagate on a taught string of length, *L*, with fixed ends! These frequencies, $f_n = n|v_x|/2L$ (wavelengths, $\lambda_n = 2L/n$) with n = 1, 2, 3, 4, *etc.* are integer multiples (integer fractions), or *harmonics*, of the *fundamental* frequency (*fundamental* wavelength), $f_1 = |v_x|/2L$ ($\lambda_1 = 2L$), respectively. Note that the