superposed with a polarity-inverted, left-moving transverse traveling wave, which is a "mirror" image of the original wave.

 The following plot shows a snapshot time sequence of a right-moving gaussian-shaped transverse traveling wave reflecting from a fixed end, located at $x = L = 10$ m. The amplitude of the pulse is $y_0 = 0.5$ *m*, the longitudinal wave speed $v_x = 1.0$ *m/sec*. Note that the sequence of (11) time snapshots progress vertically downward in 1 second steps, starting at $t = 5$ *sec*, and ending at $t = 15$ *sec*. The left-moving image pulse is used to represent the reflection in the physical region ($x \le L = 10$ *m*). Note, for the purposes of comparison with free-end reflection (see below), that the slope, $\partial y_{\text{tot}}(x=L,t)/\partial x$ is not zero at the fixed end, located at $x = L = 10$ *m*.

B.) Reflection of Waves at a Free End

If the end of a taught string, again at $x = L$ is held fixed *longitudinally*, but is freely able to vibrate *transversely*, for example, by attaching a horizontal string to the end support via a massless, frictionless ring, which can slide transversely (*e*.*g*. up and down) on a rigid, frictionless rod, the free-end *boundary condition* can be stated mathematically as the requirement that the *slope*, $\partial y/\partial x$ of the transverse displacement *at the point* $x = L$ for *any* time *t must* be zero, *i.e.* $\partial y(x=L,t)/\partial x = 0$. Operationally, we first *compute* the