	FREQUENCY—HERTZ					
	125	250	500	1000	2000	4000
Wood or metal seats, unoccupied Cloth-covered	0.15	0.19	0.22	0.39	0.38	0.30
upholstered seats, unoccupied Audience in	1.4	2.8	4.2	5.0	4.6	4.4
upholstered seats, per person	2.9	4.3	6.0	7.0	6.9	6.0

n.b. Air absorbs sound somewhat too -i.e. air temperature & relative humidity also matter! Taking into account air absorption, the Sabine Equation is modified as:

$$T_{60} = 0.049 \frac{V(ft^3)}{A(ft^2) + mV(ft^3)} = 0.161 \frac{V(m^3)}{A(m^2) + m \cdot V(m^3)}$$

where m is a temperature, humidity and frequency-dependent parameter, varying from $m \sim 0.01/m$ at 2 KHz to $m \sim 0.1/m$ at 8 KHz for $\sim NTP$ conditions with $RH \sim 30-50\%$.

Nowadays, all of this is done using acoustical computer simulation programs (*e.g.* EASE, LARA), all "tuned" from <u>real</u> measurements. Input all of the gory details of shape, size, and volume of rooms, exact shapes, sizes, and locations of all sound absorbing elements, *etc*. (also frequency dependence – see figure below)!

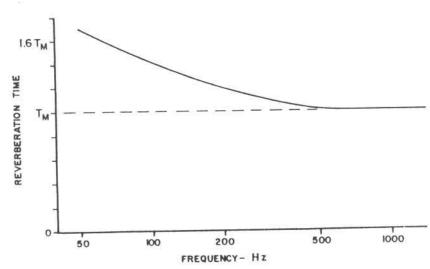


Fig. 6. Recommended variation of reverberation time with frequency.

Again, "Recommended" => subjective decisions were made about this....