<u>G. The Tempered Scale</u>:

Make all intervals the same for the 12 notes. Create an interpolated musical scale, known as the <u>tempered</u> scale with 12 <u>equally-spaced</u> semitones for the 12 notes of this musical scale – then divide up the octave into 1200 cents. Thus, 100 cents = 1 tempered semitone, and one octave = 12 tempered semitones. Not a "perfect" musical scale by any means, but the main advantage is can then play a given piece of music in any key, without it sounding "worse" in one key than another.

We can mathematically define the semitone in the <u>tempered</u> scale as: $a = (2)^{1/12} = 1.05946$. Then one cent, $1 \notin = (2)^{1/1200} = 1.000577$ in the tempered scale. Each note is built up from previous note by adding one power of the semitone, *a*, as shown in the figure below:

	Db		Eb	G	Ъ	Ab	В	Ь	
	C#]	D#	F	"#	G#	A	#	
С		D	E	F	G		Α	В	С
	а		a ³	a	16	a ⁸	a^1	0	
1		a^2	a ⁴	a^5	a^7		a ⁹	a^{11}	a ¹²
	1.059	1.1	189	1.4	14	1.587	1.78	2	
1.000		1.122	1.260	1.335	1.498	3 1	.682	1.888	2.000
			FIG.	10. The t	empere	d scale.			

The 2^{nd} note D is obtained from C by a^2 , the twelfth (*i.e.* octave) high-C note is obtained from the low-C by a factor of a^{12} , etc.

H.) Location of Frets on the Fretboard of a Guitar (Tempered Scale):

For the tempered semitone, $a = (2)^{1/12} = 1.05946$, then for a scale length *L*:

For the first 12 frets on the fretboard (first octave), where n = fret # (1-12):

Fret Location_{*n-th* fret} =
$$L/2^{\frac{n}{12}}$$

For frets 13-24 on the fretboard (2^{nd} octave), where n = fret # (13-24):

Fret Location_{*n*-th fret} =
$$\frac{1}{2}L/2^{\frac{n}{12}}$$

For frets 25-36 on the fretboard (3^{rd} octave), where n = fret # (25-36):

Fret Location_{*n-th* fret} =
$$\frac{1}{4}L/2^{\frac{n}{12}}$$