C.) Cents:

All musical scale(s) have fundamental problems, as seen from above. That's just the reality of the way things are – causes problems playing music in different keys!

Create an interpolated musical scale, known as the tempered scale with 12 equallyspaced semitones for 12 notes of this musical scale – divide up the octave into 1200 cents. Then define 100 cents as = 1 tempered semitone. Then one octave = 12 tempered semitones.

D.) Meantone Tuning:

Pythagorean major 3^{rds} are too sharp! Flatten them slightly. Pythagorean minor 3^{rds} are too flat! Sharpen them slightly.

See p. 141-3 in Acoust. Found. of Music for details of how this is accomplished.

E.) The Just Scale:

Major triad – add major third (4:5) to minor third (5:6) – creates 3 notes with interval (frequency ratio) 4:5:6!

F	Α	С				
		С	E	G		
				G	В	D
2	5	1	5	$\frac{3}{2}$	$\frac{15}{8}$	9
$\frac{2}{3}$	6	1	4	2	8	4

FIG. 7. Building the just scale.

F.) The Just Diatonic Scale:

Note:	С	D	E	F	G	A	В	С
Frequency:	1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
Interval:	<u>9</u> 8	$\frac{10}{9}$	$\frac{16}{15}$	$\frac{9}{8}$	$\frac{10}{9}$	$\frac{9}{8}$		$\frac{16}{15}$

FIG. 8. The just diatonic scale.