The human ear/brain is capable of perceiving a *fundamental* even when <u>no</u> fundamental is actually present!!! This is the so-called <u>missing fundamental effect</u>.

This effect is {again} a consequence of the non-linear response in/inside the human ear itself, and/or a non-linear response(s) in the human brain's <u>processing</u> of frequency information – whenever *e.g.* a <u>quadratic</u> non-linear response exists (in any system), if two signals *A* and *B* with frequencies f_A and f_B are input to that system, then sum and difference frequencies ($f_A + f_B$) and $|f_A - f_B|$ are produced! Thus, *e.g.* a 2nd harmonic 2 f_I and a 3rd harmonic 3 f_I can produce a "missing" fundamental from the difference frequency, $|3f_I - 2f_I| = f_I !!!$ For further details on distortion, read Physics 406 Lecture Notes on "Theory of Distortion I & II".

For some musical instruments – *e.g.* the trumpet, the oboe and/or the bassoon – the 2^{nd} (or even 3^{rd} and higher) harmonics can actually have a <u>larger</u> amplitude than that of the fundamental, however we perceive/hear the "note" that is played on the trumpet (and/or oboe, bassoon) as that of the fundamental!!!

The harmonic spectra – *aka* power spectral density functions $S_{pp}(f)vs.f$ and associated {time-averaged} relative phase harmonic phasor plots are shown below – *e.g.* for the steadily-played notes A4 (440.0 Hz) played on the oboe, and F2 (87.3 Hz) played on the bassoon:

- 8 -©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.