
The sinc function  $\operatorname{sinc}\left[\frac{1}{2}(\omega-\omega_{o})\Delta t_{o}\right] \equiv \sin\left[\frac{1}{2}(\omega-\omega_{o})\Delta t_{o}\right] / \left[\frac{1}{2}(\omega-\omega_{o})\Delta t_{o}\right]$  for sinewave signals of {short} time duration  $\Delta t_{o} = 1\tau_{o}, 2\tau_{o}, 3\tau_{o}, 4\tau_{o}$  where  $\tau_{o} = 1/f_{o}$  and the corresponding # of cycles of oscillation  $N_{c} \equiv \Delta t_{o}/\tau_{o} = 1, 2, 3, 4$  are shown in the figure below. Note that the <u>width</u>  $\Delta f_{o}$  of the main peak (at  $f = f_{o}$ ) depends <u>inversely</u> on the time duration  $\Delta t_{o}$  of the signal, due to the <u>uncertainty principle</u>  $\Delta f \Delta t = 1$ .

