Harmonics of the fundamental also known as *partials* 

The fundamental = 1<sup>st</sup> harmonic/partial The 2<sup>nd</sup> harmonic/partial has  $f_2 = 2f_1$  (aka 1<sup>st</sup> <u>overtone</u>) The 3<sup>rd</sup> harmonic/partial has  $f_3 = 3f_1$  (aka 2<sup>nd</sup> <u>overtone</u>) .... *etc*.

A vibrating string (guitar/violin/piano) contains many harmonics = complex tone.

The detailed <u>shape</u> of a plucked string on a guitar (or violin) uniquely determines its harmonic content! Please see/hear/touch Physics 406POM **Guitar.exe** demo!



The geometrical <u>shape</u> of the string at the instant (t = 0) that the string is plucked <u>defines</u> the <u>amplitudes</u> (& <u>phases</u>) of the harmonics associated with standing wave on the string:

Transverse Displacement of String:
$$y(x,t) = \sum_{n=1}^{\infty} c_n \sin(nk_1x) \cos(n\omega_1 t + \phi_n)$$
where: $k_1 = 2\pi/\lambda_1$  $k_1 = 2\pi/\lambda_1$ and: $\omega_1 = 2\pi f_1$ with: $v = \lambda_1 f_1 = \sqrt{\frac{T}{\mu}}$  $\mu = \frac{M}{L}$  $M =$  mass of string $k_n = nk_1 = \frac{2\pi}{\lambda_n}$  $v = \lambda_n f_n = \omega_n / k_n$  $\lambda_n = \lambda_1 / n$ and: $f_n = nf_1$ where: $n = 1, 2, 3, 4, ....$ 

Hierarchy of tones/harmonics = harmonic series;

e.g. 
$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin(nk_1x) \cos(n\omega_1t)$$

= superposition of waves of frequencies  $f_n = nf_1$  on a vibrating string

Note that  $f_2 = 2f_1$  means that  $f_2$  is one <u>octave</u> higher than  $f_1$ .

Ratio  $f_2/f_1 = 2:1$  The musical interval between harmonics 1 and 2 is an <u>octave</u>. Ratio  $f_3/f_2 = 3:2$  The musical <u>interval</u> between harmonics 2 and 3 is a <u>fifth</u>, etc.