The Difference Between Two Uncorrelated Loudnesses/Sound Intensity Levels:

Using the fact that:

$$\log_{10} A - \log_{10} B = \log_{10} \left(A/B \right)$$

 $\triangle L = L_2 - L_1 = \text{Difference in two Loudnesses}$ (= Difference in two Sound Intensity *Levels*).

where:

$$\begin{split} L_{1} &= 10 \log_{10}\left(I_{1}/I_{o}\right) \text{ and } L_{2} = 10 \log_{10}\left(I_{2}/I_{o}\right), \text{ then:} \\ \Delta L &= L_{2} - L_{1} = 10 \log_{10}\left(I_{2}/I_{o}\right) - 10 \log_{10}\left(I_{1}/I_{o}\right) \\ &= 10 \left[\log_{10}\left(I_{2}/I_{o}\right) - \log_{10}\left(I_{1}/I_{o}\right)\right] \\ &= 10 \left[\left(\log_{10}I_{2} - \log_{10}I_{o}\right) - \left(\log_{10}I_{1} - \log_{10}I_{o}\right)\right] \\ &= 10 \left[\log_{10}I_{2} - \log_{10}I_{1}\right] = 10 \log_{10}\left(I_{2}/I_{1}\right) \end{split}$$

If e.g.
$$I_2 = 2I_1$$
 then: $\triangle L = L_2 - L_1 = 10 \log_{10}(2) = 10 * 0.301 = 3.01 \simeq 3 dB$

i.e. there is only a $\approx 3 \, dB$ difference in loudness/intensity levels for 2 (uncorrelated) sounds which differ by a factor of $2 \times$ in intensity, $I_2 = 2I_1$.

Adding Uncorrelated Sounds:

Two uncorrelated sounds with intensity levels L_1 and L_2 (e.g. at the same frequency)

 $L_1 = 70 \ dB$ and $L_2 = 80 \ dB$ (@ $f = 1000 \ Hz$). Note that $L_2 = 80 \ dB$ corresponds to $I_2 = 10 \ I_1$:

$$L_{1} = 70 = 10 \log_{10} (I_{1}/I_{o})$$

$$T = \log_{10} (I_{1}/I_{o})$$

$$10^{7} = (I_{1}/I_{o})$$

$$I_{1} = 10^{7} I_{o} = 10^{7} * 10^{-12}$$

$$= 10^{-5} W/m^{2}$$

$$\frac{Thus:}{I_{2}} I_{0} = 10 I_{1} \text{ or: } I_{1} = 0.1I_{2}$$

$$L_{2} = 80 = 10 \log_{10} (I_{2}/I_{o})$$

$$8 = \log_{10} (I_{2}/I_{o})$$

$$10^{8} = (I_{2}/I_{o})$$

$$I_{2} = 10^{8} I_{o} = 10^{8} * 10^{-12}$$

$$= 10^{-4} W/m^{2}$$

<u>Rule</u>: <u>Must</u> add <u>Intensities</u>, <u>NOT Loudnesses</u> if sounds are <u>not</u> correlated -i.e. if sounds have no <u>phase coherence</u>

Then: $I_{sum} = I_{TOTAL} = I_1 + I_2$ {If sounds <u>are</u> correlated, then <u>must</u> add $= I_1 + 10 I_1 = 11 I_1$ amplitudes via phasor diagram \rightarrow interference effect(s)!!!}

Thus:
$$L_{sum} = 10 \log_{10} (11I_1/I_o) = 10 \log_{10} (I_1/I_o) + 10 \log_{10} (11) = 70 dB + 10.4 dB$$

= 80.4 $dB \Rightarrow$ only slightly louder than 80 dB !!!