

The so-called minimum audible pressure (MAP) (aka the reference pressure), is defined at f = 1 KHz and is:

$$p_{o \ rms} (f = 1 \ KHz) \simeq 2 \times 10^{-5} \ RMS \ Newtons/m^2 = 2 \times 10^{-5} \ RMS \ Pascals$$

In the above figure, note that the *dyne* is a cgs (cm-gm-sec) unit of force, hence the $SI/mks \Leftrightarrow cgs$ units conversion factor: 1 *Newton* = 10^5 *dynes*.

Recalling that $p_{atm} \simeq 10^5 Pascals$, we see that humans are able to hear/detect pressure variations of order ~ 1 part in 10^{10} of atmospheric pressure!!!

The corresponding minimum audible longitudinal particle velocity $u_{o\ rms}$ (aka the reference particle velocity) and minimum audible longitudinal particle displacement $\xi_{o\ rms}$ (aka the reference particle displacement) at $f=1\ KHz$ are:

$$u_{o \; rms} (f = 1 \; KHz) \simeq 4.8 \times 10^{-8} \; RMS \; m/s$$
 and: $\xi_{o \; rms} (f = 1 \; KHz) \simeq 7.7 \times 10^{-12} \; RMS \; m$

The latter should be compared *e.g.* with size of an atom, which is typically on the order of a few Angstroms, *i.e.* $d_{atom} \sim few \times 10^{-10} m \gg \xi_{orms} \sim 8 \times 10^{-12} m$, a factor of $\sim 100 \times !!!$