Normal Modes & Standing Waves

1.) Standing Sound Waves in an Organ Pipe:

(a) Standing displacement wave:

$$y = A \sin\left(\frac{2\pi x}{\lambda}\right) \cos\left(\frac{2\pi t}{\tau}\right)$$
 (Standing Wave)

• Displacement *node* at x = 0

(b) Standing pressure wave:

$$\Delta P = -B \frac{\partial y}{\partial x} = -B A \left\{ \frac{\partial}{\partial x} \sin(2\pi x/\lambda) \right\} \cos\left(\frac{2\pi t}{\tau}\right) = -\frac{2\pi B A}{\lambda} \cos\left(\frac{2\pi x}{\lambda}\right) \cos\left(\frac{2\pi t}{\tau}\right)$$

• Explains why **displacement** <u>nodes</u> are **pressure** <u>anti-nodes</u>!

- (c) Pressure <u>node</u> $(p = p_{ambient})$ just **beyond** open end $x = L + \delta \Leftarrow$ not precisely at x = L!
 - so-called "end correction" $\delta \approx 0.6D$, where D= diameter of pipe.