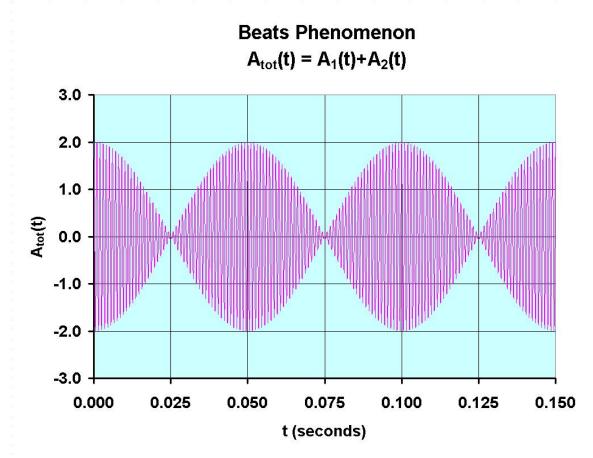
The phase of the total amplitude $A_{tot}(t)$ relative to that of the first amplitude $A_1(t)$, at an arbitrary time *t* is $\Delta \psi(t)$ and is obtained from the projections of the total amplitude phasor $A_{tot}(t)$ onto the *y*- and *x*- axes of the 2-D phasor plane:

$$\tan \Delta \psi = \frac{A_2(t)\cos\left(\omega_2(t)t + \Delta\varphi_{21}(t)\right)\sin\Delta\varphi_{21}(t)}{A_1(t)\cos\left(\omega_1(t)t\right) + A_2(t)\cos\left(\omega_2(t)t + \Delta\varphi_{21}(t)\right)\cos\Delta\varphi_{21}(t)}$$

The total amplitude $A_{tot}(t) = A_1(t) + A_2(t)$ vs. time *t* is shown in the figure below, for timeindependent/constant frequencies of $f_1 = 1000 Hz$ and $f_2 = 980 Hz$, equal amplitudes of unit strength $A_{10} = A_{20} = 1.0$ and zero relative initial phase $\Delta \varphi_{21} = 0.0$



Clearly, the beats phenomenon can be seen in the above waveform of total amplitude $A_{tot}(t) = A_1(t) + A_2(t)$ vs. time *t*. When $A_{tot}(t) = 0$, we have complete destructive interference of the two individual amplitudes – *i.e.* the 2nd amplitude is 180° out of phase relative to the first. When $A_{tot}(t) = 2$, we have complete constructive interference of the two amplitudes – the two individual amplitudes are exactly in phase with each other. More on this, below...

From the above graph, it is also obvious that the beat period $\tau_{\text{beat}} = 1/f_{\text{beat}} = 0.050 \text{ sec} = 1/20^{\text{th}}$ sec, corresponding to a beat frequency of $f_{\text{beat}} = 1/\tau_{\text{beat}} = 20 \text{ Hz}$, which is simply the (<u>absolute</u> value of the) frequency difference $f_{\text{beat}} \equiv |f_1 - f_2|$ between $f_1 = 1000 \text{ Hz}$ and $f_2 = 980 \text{ Hz}$. Thus, the beat period $\tau_{\text{beat}} = 1/|f_1 - f_2|$. When $f_1 = f_2$, the beat period becomes infinitely long, and no beats are heard.