

 $A =$ displacement amplitude of wave = max *displacement* from equilibrium position (meters, *m*)

- $f =$ frequency of wave $=$ number of complete cycles per second of wave (*cycles per second* = *cps* = *Hertz*, or *Hz*).
- λ = "lambda" = spatial wavelength of wave distance to complete one oscillation cycle (meters, *m*)
- τ = "tau" = period of wave = time to complete one oscillation cycle = "temporal wavelength" (*seconds* (*secs*, or *s*)):

$$
\tau = 1/f
$$

 ν = speed of propagation of wave (*meters*/*second* = *m*/*s*): ν = $f \lambda$

= "omega" = angular frequency (*radians*/*second* = *rads*/*sec*, or *rads*/s):

$$
\omega = 2\pi f, \quad f = \omega/2\pi
$$

 $k =$ spatial wave number (inverse *meters*, i.e. $1/meters = 1/m$):

 $\begin{array}{|c|c|c|c|c|} \hline k=2\pi/\lambda & \hline \end{array}$ Hence, we also see that: $\begin{array}{|c|c|c|c|c|} \hline v=f\lambda=2\pi f\cdot\lambda/2\pi=\omega/k \hline \end{array}$ $k = 2\pi/\lambda$

 Sinusoidal *longitudinal* wave propagation {in the +*ve z*-direction} (relevant *e*.*g*. for sound propagation in air/water) is mathematically described by:

$$
Z(z,t) = Z_o \sin(\omega t - kz)
$$

where $z =$ listener's position, $Z_o =$ longitudinal displacement amplitude (i.e. along the direction of propagation) and $Z(z,t)$ is the instantaneous *longitudinal* displacement (*i.e.* longitudinal deviation) from the wave's equilibrium position at the point *z* at time *t*.

Note that the *argument* of the sine function $(\omega t - kz) = \text{constant}$. Thus, as time *t* increases, the position *z* must also increase – hence the name **traveling** wave. Hence, we also see that an argument of the sine function of the form $(\omega t + kz)$ = constant mathematically represents a traveling longitudinal displacement plane wave propagating in the $-z$ direction: $Z(z,t) = Z_0 \sin(\omega t + kz)$

- 6 -