Now suppose that a *small* amount of damping is present in the system. Mathematically this is represented by $\gamma = (b/2M) < \omega$, hence $\sqrt{\gamma^2 - \omega^2} = i\sqrt{\omega^2 - \gamma^2}$, with purely real $\sqrt{\omega^2 - \gamma^2} > 0$. We define $\omega^2 = \omega^2 - \gamma^2$ or equivalently $\omega' = \sqrt{\omega^2 - \gamma^2} > 0$. Thus, for **under-damped** 1-D harmonic motion, with $0 < \gamma = (b/2M) < \omega$, we see that $\zeta = -\gamma \pm \sqrt{\gamma^2 - \omega^2} = -\gamma \pm i\sqrt{\omega^2 - \gamma^2} = -\gamma \pm i\omega'$, and thus the *physical* solution for *under-damped* 1-D harmonic motion, for our *initial* conditions is given by: $x(t) = x_0 e^{\zeta t} = x_0 e^{-\gamma t} \cos(\omega' t) = \frac{1}{2} x_0 e^{-\gamma t} \left(e^{i\omega' t} + e^{-i\omega' t} \right)$ where the *damping constant* $0 < \gamma = (b/2M) < \omega$ and $0 < \omega' = \sqrt{\omega^2 - \gamma^2} < \omega$. The motion is *exponentially* damped as time increases, with *damping time constant* $\left|\tau_d = 1/\gamma = (2M/b)\right|$ (*seconds*), where the *envelope* of the 1-D oscillation falls to $1/e = e^{-1} \approx 0.3679$ of its initial value at time $\boxed{t = \tau_d \equiv 1/\gamma = (2M/b)}$ (*seconds*), as shown in the figure below:

FIG. 3. Graph of displacement versus time for a damped vibration.

 Dissipative processes/friction tends to *lower* the frequency of oscillation of a vibrating system, as can be seen from the relation $0 < \overline{\omega' = \sqrt{\omega^2 - \gamma^2} < \omega}$. Small damping corresponds to a slight decrease in the oscillation frequency from its "natural" un-damped value of $\omega = \sqrt{k/M}$.

 If we now imagine slowly increasing the damping to "heavy" damping – eventually there will be no oscillation(s) at all! When $\gamma = \omega$, the system is said to be *critically damped*, and $\zeta = -\gamma$, and the corresponding *critically-damped* motion is a purely-decaying exponential with time: $x(t) = x_0 e^{-\gamma t}$. When $\gamma > \omega$, the system is said to be *over-damped*, and $\sqrt{\gamma^2 - \omega^2} > 0$. Here, $\zeta = -\gamma \pm \sqrt{\gamma^2 - \omega^2}$, but the *physical* solution is: $\zeta = -\gamma + \sqrt{\gamma^2 - \omega^2} = -\gamma \left(1 - \sqrt{1 - (\omega/\gamma)^2}\right)$.

The *over-damped* motion is again a decaying exponential with time: $\left| x(t) = x_0 e^{\zeta t} = x_0 e^{-\gamma \left(1 - \sqrt{1 - (\omega/\gamma)^2}\right)t} \right|$.

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.

- 7 -