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Note that P.E.(t), K.E.(t) and Etot(t) are always   0 (i.e. never negative)!!! 
 

Note further that energy/energies are additive, scalar quantities. 
 

A real vibrating spring – mass system suffers from various energy loss mechanisms: 
 * friction –  the mass M slides on surface, mass M also slides through viscous air 

* spring also dissipates energy internally each time it is flexed (another type of friction) 
 

* Thus, the motion of a real mass on a real spring is damped by frictional processes. 
* The original/initial energy, ( )tot oE t E=  = constant is dissipated by frictional processes.  

* The initial energy Eo ultimately winds up as heat (another form of energy) - thus the mass,    
    spring, horizontal surface and the air all heat up with time… 
 
     Mathematically, we can represent the effect(s) of frictional damping associated with a 1-D  
simple harmonic oscillator as a velocity-dependent (and hence time-dependent) force  dF t  

acting horizontally on the mass M, which opposes the motion, which, for the initial conditions of 

our problem, this damping force is given by:     dF t bv t   where b is a positive constant, 

known as the viscous damping coefficient, with SI units of kg/sec. 
 

     Then since      dx t
v t x t

dt
   , the equation of motion for the damped 1-D simple harmonic 

oscillator becomes: 
     

2

2
0

d x t dx t
M b kx t

dt dt
    or:       0M x t bx t kx t     

 

     We can rewrite this differential equation as:            0x t b M x t k M x t     and defining: 

the damping constant   2 0b M    and     

22 22k M f   , then our linear, 

homogeneous 2nd-order differential equation can also be written as:      22 0x t x t x t     .  

The general solution to this differential equation is of the form:   t
ox t x e .  

 

     Explicitly carrying out the time-differentiation we obtain:      2 22 0x t x t x t       

or: 2 22 0      which in turn is a quadratic equation in  , the solution for which has two 

roots: 
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  
   

  
     .  

     When no damping is present ( 0  ), then:   2 0b M   , and thus: 2    .  
 

Defining 1i   , then for 0   we see that i   .  

Next, we use Euler’s complex relations for cosine and sine functions:  1
2cos i t i tt e e      

and  1
2sin i t i t

it e e    . For the no-damping situation, we already know (from above) what 

the solution must be for the 1-D harmonic motion, with our initial conditions: 

   1
2( ) cos i t i t

o ox t x t x e e     . 




