Once the mass *M* has been set in motion, Newton's 2nd Law tells us that: $F(t) = -kx(t) = Ma(t)$ However: $\left| x(t) = x_o \cos(2\pi ft) \right| = x_o \cos(\omega t)$ And from above, we also know that: $\begin{vmatrix} a_{0} = \omega^{2}x_{0} = (2\pi f)^{2}x_{0} \end{vmatrix}$ $\therefore \begin{vmatrix} -kx_{0} = -\omega^{2}x_{0} \end{vmatrix}$ \therefore $-kx_0 = -\omega^2 Mx_0$ Thus, the frequency *f* and angular frequency ω of oscillation of the mass *M* on the spring are: $\left| \begin{array}{c} t \end{array} \right|$ $\left| \begin{array}{c} k \end{array} \right|$ Cycles per second, or Hz $\left| \begin{array}{c} \end{array} \right|$ and $\left| \omega = 2\pi f = \sqrt{\frac{k}{n}} \right|$ (*radians/sec*) The period of oscillation τ of the mass *M* on the spring is: $\left(\frac{\tau}{\tau} - \frac{1}{\tau} - 2\pi \right) \frac{M}{M}$ (*seconds*) Note also that since the instantaneous acceleration $a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$ $dv(t)$ $d^2x(t)$ $a(t) = \frac{dv(t)}{dt} = \frac{dv(t)}{dt^2}$, then we can write Newton's $2nd$ law for this system as a differential equation: $F(t) = -kx(t) = Ma(t) \implies -kx(t) = M \frac{d^2x(t)}{dt^2}$ $d^2x(t)$ $kx(t) = M$ $-kx(t) = M \frac{d^2x(t)}{dt^2}$ or: $M \frac{d^2x(t)}{dt^2} + kx(t)$ $\frac{y}{2} + kx(t) = 0$ $d^2x(t)$ $M \frac{d^{n}x(t)}{dt^{2}} + kx(t)$ *dt* $kx(t) = 0$ or: $M \ddot{x}(t) + kx(t) = 0$ $d^2x(t)$ and: $a(t) = -a_0 \cos(2\pi ft) = -a_0 \cos(\omega t)$ $f = \frac{1}{2\pi} \sqrt{\frac{k}{M}}$ Cycles per second, or *Hz* and $\omega = 2\pi f = \sqrt{\frac{k}{M}}$ $\omega = 2\pi f = \sqrt{\frac{k}{h}}$ *k M f* $\tau = \frac{1}{2} = 2\pi$

2

 $\ddot{x}(t) = \frac{d^{2}x(t)}{dt^{2}}$.

which is a linear, homogenous $2nd$ -order differential equation, and where:

The instantaneous potential energy *stored* in the stretched/compressed spring is:

$$
P.E.(t) = \frac{1}{2}kx^{2}(t) \quad (Joules)
$$

The instantaneous kinetic energy associated with the *moving* mass, *M* is:

$$
K.E.(t) = \frac{1}{2}Mv^{2}(t)
$$
 (Joules)

The potential energy of the spring and the kinetic energy of the moving mass are both time dependent:

$$
P.E.(t) = \frac{1}{2}kx^{2}(t) = \frac{1}{2}kx_{o}^{2}\cos^{2}(\omega t) \ge 0
$$

$$
K.E.(t) = \frac{1}{2}Mv^{2}(t) = \frac{1}{2}Mv_{o}^{2}\sin^{2}(\omega t) \ge 0
$$

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.

 $-4-$