$$
a(t) = \frac{\Delta v(t)}{\Delta t} = \frac{dv(t)}{dt} = \text{total derivative of } v(t) \text{ with respect to time, } t.
$$

$$
a(t) = \frac{d}{dt} \left(v(t) \right) = \frac{d}{dt} \left[v_o \sin \left(2\pi f t \right) \right] = 2\pi f \ v_o \cos \left(2\pi f t \right) = \omega v_o \cos \left(\omega t \right) \equiv a_o \cos \left(\omega t \right)
$$

We see that:
$$
a_o = \omega v_o = 2\pi f \ v_o \quad \text{but:} \quad v_o = -\omega x_o = -2\pi f \ x_o \quad \therefore \quad a_o = -\omega^2 x_o = -\left(2\pi f \right)^2 x_o
$$

i.e. the acceleration amplitude, A_o = max acceleration is related to the displacement amplitude, *Xo* by this formula for *harmonic* motion.

Instantaneous Horizontal Accel. of the Moving Mass: $\left(m/s^2\right)$ $(meters/sec²)$ $(meters/sec²)$ acceleration \Box frequency of oscillation $\frac{\text{amplitude}}{\text{m/s}^2}$ (cycles per second = Hertz) $a(t) = a_o \cos(2\pi ft) = a_o \cos(\omega t)$

The time dependence of the longitudinal position, $x(t)$ (*i.e.* displacement of the mass from its equilibrium position) *vs*. time, *t* and longitudinal speed of the mass, $v(t)$ *vs*. time, *t* and longitudinal acceleration $a(t)$ vs. time, *t* are shown in the figure below; note that each has been normalized to their respective amplitudes (note also the phase relation between $x(t)$, $v(t)$ and $a(t)$):

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved. - 3 -