If there is no friction, and the mass *M* is horizontally displaced from its equilibrium ($x = 0$) position by pulling on it to the right, as shown in the above figure, the force necessary to accomplish this is $|F_t = +kx_o|$ (Hooke's Law), where $k > 0$ is the so-called "spring constant" of the spring (*k* has metric units of Newtons/meter) and x_o = the initial displacement of the mass *M* from its $x = 0$ equilibrium position.

At time $t = 0$ the mass is released. At that instant, the only force acting on the mass is due to the {horizontal} restoring force of the spring: $|F_s(t=0) = -kx_0 = -F_I|$. However, from Newton's 2^{nd} Law: $F(t) = Ma(t)$, therefore at time $t = 0$: $|F_s(t=0) = -kx_0 = Ma(t=0)|$.

As time progresses the mass *M* oscillates horizontally back and forth about its $x = 0$ equilibrium position, exhibiting sinusoidal/harmonic motion. Mathematically, the timedependence of this horizontal sinusoidal/harmonic motion is described by:

Longitudinal displacement from equilibrium:

Longitudinal displacement from equilibrium:
$$
x(t) = x_o \cos(2\pi ft) = x_o \cos(\omega t)
$$
 (m)
\n $x(t) = x_o \cos(2\pi ft) = x_o \cos(\omega t)$ (m)
\n $x(t) = x_o \cos(2\pi ft) = x_o \cos(\omega t)$ (m)
\n $x_o \cos(\omega t)$

Omega:

 $\omega = 2\pi f$ = angular frequency (units = radians per second)

Period of oscillation:
$$
\tau = \frac{1}{f} = \frac{2\pi}{\omega}
$$
 (seconds)

The instantaneous horizontal speed of the moving mass $v(t)$ with time *t* is defined as the time rate of change of the horizontal position (longitudinal displacement) of the moving mass with time *t*, physically, $v(t)$ is the instantaneous local slope of the $x(t)$ vs. *t* graph at time *t*:

$$
v(t) = \frac{\Delta x(t)}{\Delta t} = \frac{dx(t)}{dt} = \text{total derivative of } x \text{ with respect to time, } t \text{ (since 1-D partial } \Rightarrow \text{ total).}
$$

$$
v(t) = \frac{d}{dt}(x(t)) = \frac{d}{dt}\Big[x_o \cos(2\pi ft)\Big] = -2\pi f \ x_o \sin(2\pi ft) = -\omega x_o \sin(\omega t) = v_o \sin(\omega t)
$$

We see that:
$$
v_o = -\omega x_o = -2\pi f \ x_o
$$

$$
v_e = -\omega x_o = -2\pi f \ x_o
$$

$$
v_e = -\omega x_o = -2\pi f \ x_o
$$

wearrow is related to the

i.e. the speed "amplitude", v_0 = max speed is related to the displacement amplitude, *xo* by this formula for *harmonic* motion.

Instantaneous Horizontal Speed of the Moving Mass:	\n $v(t) = v_o \sin(2\pi ft) = v_o \sin(\omega t)$ \n	\n (m/s) \n		
\n \uparrow \n	\n $v(t) = v_o \sin(2\pi ft) = v_o \sin(\omega t)$ \n	\n (m/s) \n		
\n \uparrow \n	\n $v(t) = v_o \sin(2\pi ft) = v_o \sin(\omega t)$ \n	\n (m/s) \n		
\n \uparrow \n	\n $v_o \sin(\omega t) = v_o \sin(\omega t)$ \n	\n (m/s) \n		
\n \downarrow \n	\n v_{o} \n	\n v_{o} \n	\n v_{o} \n	\n v_{o} \n

The instantaneous horizontal acceleration of the moving mass *a*(*t*) with time *t* is defined as the time rate of change of the horizontal speed of the moving mass with time *t*, physically, *a*(*t*) is the instantaneous local slope of the *v*(*t*) *vs*. *t* graph at time *t*:

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved. $-2-$