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     Thus, the frequency-domain real/in-phase and imaginary/90o-out-of-phase/quadrature RMS 
voltage amplitude components output from the LIA for the pressure mic located at x = d will be: 
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     Thus, the frequency-domain real/in-phase and imaginary/90o-out-of-phase/quadrature RMS 
components of the complex pressure amplitude  ,p x d   at x = d are:  
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     Thus, we see that at x = d, a propagation delay time-induced phase shift of S x d
kd


   

results from the fact that it takes a finite time propt d c   for the a free-field plane wave to 

propagate in free air from x = 0 to x = d. Since 2k c     in free-air, we see that the 

apparent phase shift at x = d  is:      S prop propx d
kd c d c c t t   
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    Thus {here}, we see that the phase shift S x d



 at x = d  is in fact frequency dependent, 

linearly proportional to the (angular) frequency:      S propx d
k d t    


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becoming more negative with increasing (angular) frequency 2 f  . See figure below. 
 

     While the propagation delay time-induced phase shift effect may initially be perceived as an 
experimental annoyance, it is actually a physics blessing in disguise!  
 

    If the p-mic distance d from the sound source is known, then a measurement of the phase 
speed of sound (the speed at which the phase {i.e. the crests/troughs of sound waves} advances) 

     c k f         vs. frequency f can be obtained using: 
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     The group speed of propagation of sound waves ((the speed at which energy/information 

propagates) is defined as:     1

gc dk d  
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    , which is the {inverse of the} local slope of 

the graph of  k   vs.   (at fixed p-mic position, d). Thus, since    S x d
k d  


  , then: 

    S x d
d d dk d d    


    , hence the group speed of propagation of sound waves  

 

       
11
 g S x d

c dk d d d d m s     



         

 

For propagation of free-field monochromatic traveling plane waves, the local slope 
   dk d k    , hence      gc c k      in the free-field. In general, this is not 

the case for an arbitrary sound field, e.g. the near vs. far zone associated with a point/monopole 
sound source, or e.g. a plane circular piston of radius a (an approximation to a loudspeaker). 




