Note further that when the {absolute value} of Re $\{\tilde{\gamma}_{u_k \star_p}(\omega)\} \approx 1$, the *k*th component of a polyphonic complex sound field $\tilde{S}(\vec{r},t;\omega)$ is *fully-coherent*, .and. is one that is associated with *propagating* sound radiation, *e*.*g*. when a listener's position is far from a point sound source, in the so-called *far-field* region of a sound source, $r \gg \lambda$.

However, when the {absolute value} of $\text{Im}\left\{\tilde{\gamma}_{u_k\star_p}(\omega)\right\} \approx 1$ the k^{th} component of a polyphonic complex sound field $\tilde{S}(\vec{r},t;\omega)$ is {also} *fully-coherent*, but is instead associated with *nonpropagating* sound radiation – *i*.e. acoustic energy that is simply sloshing back and forth locally at the listener's point *r* during each cycle of oscillation, *e*.*g*. in the so-called *near-field* region of a sound source, $r \ll \lambda$.

 Thus, *e*.*g*. simultaneously exciting the 3 acoustic standing waves associated with the $[1,0,0]/[0,1,0]/[0,0,1]$ axial modes of a cubical 3-D enclosure of side $d = \lambda/2$, with 3-fold degenerate modal frequency $f_{res} \equiv f_{100} = f_{010} = f_{001} = c/2d$, we see that $\text{Re}\left\{\tilde{\gamma}_{u_k \star p}(\omega_{res})\right\} \simeq 0$ and $\lim \left\{ \tilde{\gamma}_{u_k \star_p} \left(\omega_{\text{res}} \right) \right\} \approx 1$ for each of the $k = x, y, z$ components of this complex sound field.

We can additionally define the corresponding $k = x$, y , z vector components of the *magnitudesquared* version of the *frequency-domain sound field coherence function* $\left| \vec{\tilde{\gamma}}_{u\star p}(\omega) \right|^2$ {*n.b.* a purely *real* quantity}, as:

$$
\left| \vec{\tilde{y}}_{u \star p} (\omega) \right|^2 = \vec{\tilde{y}}_{u \star p} (\omega) \cdot \vec{\tilde{y}}_{u \star p}^* (\omega) = \frac{\left| \vec{\tilde{S}}_{u \star p} (\omega) \right|^2}{\tilde{S}_{p \star p} (\omega) \cdot \tilde{S}_{u_k \star u_k} (\omega)} = \frac{\left| \vec{\tilde{G}}_{u \star p} (\omega) \right|^2}{\tilde{G}_{p \star p} (\omega) \cdot \tilde{G}_{u_k \star u_k} (\omega)}
$$
\nwhere:\n
$$
\left| \vec{\tilde{y}}_{u \star p} (\omega) \right|^2 = \left| \tilde{y}_{u \star p} (\omega) \right|^2 + \left| \tilde{y}_{u \star p} (\omega) \right|^2 + \left| \tilde{y}_{u \star p} (\omega) \right|^2
$$

The individual $k = x, y, z$ components of the *frequency-domain* the *magnitude-squared* coherence function $\left| \vec{\tilde{\gamma}}_{u \star p} (\omega) \right|^2$ can range from $0 \le \left| \tilde{\gamma}_{u_\kappa \star p} (\omega) \right|^2 \le 1$. When $\left| \tilde{\gamma}_{u_\kappa \star p} (\omega) \right|^2 \approx 1$, a polyphonic complex sound field $\tilde{S}(\vec{r},t;\omega)$ is *fully-coherent* (*e.g.* at a listener's position some distance away from a single sound source), whereas when $|\tilde{\gamma}_{u_k \star_p}(\omega)|^2 \approx 0$, the polyphonic complex sound field is *completely incoherent* (*e*.*g*. at a listener's position deep inside the *reverberant* portion of a polyphonic complex sound field $\tilde{S}(\vec{r},t;\omega)$ associated with a large listening room and/or auditorium, concert hall, *etc*.).

 It can also be seen from the above discussion(s) that the complex 3-D vector coherence function $\vec{\tilde{y}}_{u_k \star_p}(\omega)$ contains more information (real and imaginary components) and is thus more useful than its purely-real, magnitude-squared version $\left| \vec{\tilde{\gamma}}_{u\star p}(\omega)\right|^2$.

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved. -23-