Discrete Fourier Transforms:

In an experimental/laboratory situation *e.g.* using modern data acquisition hardware such as a digital oscilloscope/digital recorder, or a dedicated waveform acquisition system, where <u>time</u> <u>domain</u> signals $\tilde{f}(t)$ are <u>digitized</u> at a constant sampling rate of f_s (samples/second) {corresponding to a sampling time interval $\Delta t_s = 1/f_s$ } their <u>frequency domain</u> counterparts $\tilde{g}(\omega)$ can be obtained using so-called <u>discretize</u>d Fast-Fourier Transform {*FFT*} techniques.

For <u>discretized</u> complex <u>time domain</u> functions consisting of a uniformly time-sampled sequence of N <u>complex</u> numbers $\tilde{g}_n(t_n)$, the <u>discrete</u> Fourier transform of complex <u>time domain</u>

$$\tilde{g}_n(t_n)$$
 to the frequency domain is: $\tilde{g}_k(\omega_k) = \sum_{n=0}^{N-1} \tilde{g}_n(t_n) e^{-(2\pi i/N)kn}$, with $k = 0, 1, 2, ...N-1$.

The <u>inverse</u> of the <u>discrete</u> Fourier transform of complex <u>frequency domain</u> $\tilde{g}_k(\omega_k)$ to the <u>time</u> <u>domain</u> is: $\tilde{g}_n(t_n) = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{g}_k(\omega_k) e^{+(2\pi i/N)kn}$. The $e^{(2\pi i/N)}$ are known as the <u>primitive Nth roots of</u> <u>unity</u>.

For the remainder of the discussion(s) <u>here</u>, we will work with <u>continuous</u> complex functions $\tilde{g}(t)$ and. We leave it to the interested reader to transcribe the following results to the discretized versions, if needed, or, one can simply consult a good text book on digital signal processing...

Convolution:

We can <u>convolute</u> a complex <u>time domain</u> function $\tilde{f}(t)$ with another $\tilde{g}(t)$ by carrying out the mathematical operation of <u>convolution</u>:

$$\tilde{h}_{f\otimes g}\left(t\right) \equiv \tilde{f}\left(t\right) \otimes \tilde{g}\left(t\right) \equiv \int_{-\infty}^{+\infty} \tilde{f}\left(\tau\right) \cdot \tilde{g}\left(t-\tau\right) d\tau$$

The \otimes symbol denotes the <u>convolution</u> operation. *n.b.* $\tilde{h}(t)$ has units of $\tilde{f}(t) \cdot \tilde{g}(t) \cdot sec$.

The Fourier transform the above relation is: $\tilde{h}_{f\otimes g}(\omega) = \mathcal{F}\{\tilde{h}_{f\otimes g}(t)\} \equiv \int_{-\infty}^{+\infty} \tilde{h}_{f\otimes g}(t)e^{-i\omega t}dt$, the <u>frequency domain</u> representation of complex <u>time domain convolution</u>. It can be shown that:

$$\tilde{h}_{f\otimes g}(\omega) = \mathcal{F}\left\{\tilde{h}_{f\otimes g}(t)\right\} = \mathcal{F}\left\{\tilde{f}(t)\otimes\tilde{g}(t)\right\} = \mathcal{F}\left\{\tilde{f}(t)\right\} \cdot \mathcal{F}\left\{\tilde{g}(t)\right\} = \tilde{f}(\omega)\cdot\tilde{g}(\omega)$$

The \cdot symbol denotes simple <u>*multiplication*</u>. *n.b.* $\tilde{h}_{f\otimes g}(\omega)$ has physical units of $\tilde{f}(\omega) \cdot \tilde{g}(\omega)$.

We see that <u>convolution</u> of two complex <u>time domain</u> functions $\tilde{f}(t) \otimes \tilde{g}(t)$ is equivalent to simple <u>multiplication</u> of their <u>frequency domain</u> counterparts, $\tilde{f}(\omega) \cdot \tilde{g}(\omega)$!