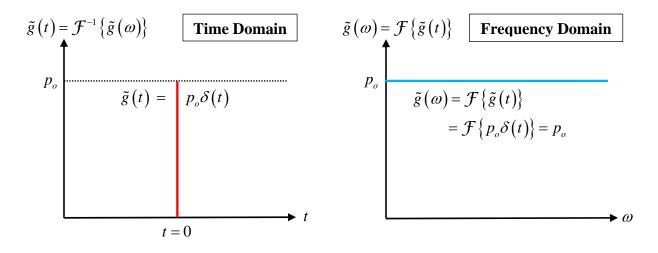
Conversely, an infinitely sharp/narrow <u>time domain</u> sound "spike" $\tilde{g}_1(t) = p_o \delta(t)$ (*Pascals/sec*) produces a <u>flat</u> frequency <u>spectrum</u> (a <u>continuum</u> of frequencies with <u>equal</u> amplitudes) $\tilde{g}(f) = \tilde{g}(\omega) = \mathcal{F}\{\tilde{g}(t)\} = p_o$ (*Pascals*), as shown graphically in the two figures below:



There are many useful relations associated with Fourier transforms, which we summarize below, for the most commonly used ones:

	<u>Time-Domain</u> :		<u>Frequency Domain</u> :
Linearity:	$\tilde{h}(t) = a\tilde{f}(t) + b\tilde{g}(t)$	\Rightarrow	$\tilde{h}(\omega) = a\tilde{f}(\omega) + b\tilde{g}(\omega)$
Translation:	$\tilde{h}(t) = \tilde{f}(t - t_o)$	\Rightarrow	$\tilde{h}(\omega) = \tilde{f}(\omega)e^{i\omega t_o}$
Modulation:	$\tilde{h}(t) = \tilde{f}(t)e^{i\omega_{o}t}$	\Rightarrow	$\tilde{h}(\omega) = \tilde{f}(\omega - \omega_o)$
Scaling:	$\tilde{h}(t) = \tilde{f}(at)$	\Rightarrow	$\tilde{h}(\omega) = \frac{1}{ a } \tilde{f}\left(\frac{\omega}{a}\right)$
Conjugation:	$\tilde{h}(t) = \tilde{f}^*(t)$	\Rightarrow	$\tilde{h}(\omega) = \tilde{f}^*(-\omega)$