sec, *meters*, *etc*. However, since frequencies (f) are usually expressed in Hz (= cycles per second = sec^{-1}), the dimensionful physical units of *frequency domain* $\tilde{g}(f)$ are more commonly expressed as *RMS Volts*/*Hz*, *Pascals*/*Hz*, (*meters*/*sec*)/*Hz*, *etc*., respectively.

The *angular frequency* Fourier transform of $\tilde{g}(t)$, $\tilde{g}(\omega) = \mathcal{F}\{\tilde{g}(t)\}\equiv \int_{-\infty}^{+\infty} \tilde{g}(t)e^{-i\omega t}dt$ have dimensionful physical units of *RMS Volt-*sec/*rad*, *Pascal-sec*/*rad*, *meters*/*rad*, *etc*., respectively.

If we now explicitly insert $\tilde{g}(t) = p_{o}e^{i\omega_{o}t}$ into the expression for the Fourier transform of the *time domain* $\tilde{g}(t)$ to the *frequency domain*:

$$
\tilde{g}(\omega) = \mathcal{F}\left\{\tilde{g}(t)\right\} \equiv \int_{-\infty}^{+\infty} \tilde{g}(t) e^{-i\omega t} dt = \int_{-\infty}^{+\infty} p_o e^{+i\omega_o t} e^{-i\omega t} dt = p_o \underbrace{\int_{-\infty}^{+\infty} e^{+i(\omega_o - \omega)t} dt}_{=2\pi\delta(\omega_o - \omega)} = p_o \cdot 2\pi\delta(\omega_o - \omega)
$$

where the delta function $\delta(\omega_o - \omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(\omega_o - \omega)}$ $\delta(\omega_o - \omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(\omega_o - \omega)t} dt$, has the dimensionful physical units of the *inverse* of its argument, *i.e.* $1/\omega = 1/2\pi f$ (= seconds/radian, or equivalently, $1/radian-Hz$).

We insert the *frequency domain* $\tilde{g}(\omega) = p_o \cdot 2\pi \delta(\omega_o - \omega)$ into the expression for the *inverse* Fourier transform to obtain the *time domain* representation $\tilde{g}(t)$:

$$
\tilde{g}(t) = \mathcal{F}^{-1}\left\{\tilde{g}(\omega)\right\} \equiv \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{g}(\omega) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} p_o \cdot 2\pi \delta(\omega_o - \omega) e^{i\omega t} d\omega = p_o e^{i\omega_o t}
$$

where we have used the relations: $\int_{-\infty}^{+\infty} \delta(x_o - x) dx = 1$ and: $\int_{-\infty}^{+\infty} g(x) \cdot \delta(x_o - x) dx = g(x_o)$.

 Thus, we see that an infinitely long/continuous complex exponential *time domain* signal $\tilde{g}(t) = p_e e^{i\omega_e t}$ corresponds to an infinitely sharp/narrow "spike" in the *frequency domain* $\tilde{g}(\omega) = p_o \cdot 2\pi \delta(\omega_o - \omega)$, as shown graphically in the two figures below:

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved. -15-