A more modern/high-tech and much more compact version of the condenser microphone uses a permanently-polarized electret-film type material to provide the electrostatic \vec{E} -field in the small gap d_{eap} between the diaphragm (with metalized surface) and the electret film (also with a metalized surface). An electret film consists of a material (e.g. PVDF - polyvinylidene fluoride a piezo-electric material), the molecules of which have a permanent electric dipole moment associated with them, analogous to permanent magnetic materials. Due to the permanent electric polarization \vec{P} (*Coulombs/m*²) associated with the molecules making up the electret material, the <u>surface</u> of the electret film has a <u>bound</u> surface electric charge density, $\sigma_b \equiv \vec{P} \cdot \hat{n}$ (Coulombs/m²) associated with it, which produces a constant/uniform electric field $\vec{E}_{_{gap}}$ between the diaphragm and the electret material, of magnitude $\left| \vec{E}_{gap} \right| = \sigma_b / \varepsilon_o$ with potential difference across the plates of this capacitor of $V_{gap} = \left| \vec{E}_{gap} \right| d_{gap} = (\sigma_b / \varepsilon_o) d_{gap}$. When an over-pressure $\tilde{p}(\vec{r}, t)$ is present on the diaphragm of this microphone, the voltage across the gap between plates of this capacitor also becomes time-dependent $V_{gap}(t) = \left| \vec{E}_{gap} \right| \cdot d_{gap}(t) = (\sigma_b / \varepsilon_o) \cdot d_{gap}(t) = (\sigma_b / \varepsilon_o) \cdot \left[d_{gap} + x_{dia}(t) \right]$. If this voltage signal is amplified, e.g. with a high input impedance FET, it makes for a wonderfully pressure-sensitive microphone, one with excellent frequency/phase response and intrinsically low noise characteristics. A schematic diagram of an electret condenser microphone is shown in the figure below.

-5-©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.