However, far from the sound source, when $r \to \infty$ $(kr \gg 1)$, then $|i/kr| = 1/kr \ll 1$ and $\tilde{u}_r(r,t)$ is predominantly real, and also <u>in-phase</u> with the complex over-pressure $\tilde{p}(r,t)$, and hence far from the point sound source, both the <u>frequency-domain</u> complex radial specific acoustic impedance $\tilde{z}_{a_r}(r,\omega) = \tilde{p}(r,\omega)/\tilde{u}_r(r,\omega)$ and <u>frequency-domain</u> radial acoustic intensity $\tilde{I}_{a_r}(r,\omega) = \frac{1}{2} \tilde{p}(r,\omega) \cdot \tilde{u}_r^*(r,\omega)$ will be largely **real** quantities associated with *active/propagating* sound radiation originating from the {distant} point sound source.

The "*near-field*" ($kr \ll 1$) and the "*far-field*" ($kr \gg 1$) behavior of the complex sound field $\tilde{S}(\vec{r},t)$ associated with an isotropic point sound source emitting monochromatic spherical outgoing waves can be easily understood from a physically-intuitive perspective:

Far from the point sound source $(r \to \infty)$, the spherical waves are to an increasing degree nearly perfect *plane waves* – the <u>curvature</u> of the spherical wavefronts becomes increasingly neglectable as *r* increases far from the point sound source. As we have seen in the previous P406 Lecture Notes 12, for a monochromatic plane/traveling wave propagating in "free air", the complex over-pressure $\tilde{p}(r,t)$ and {longitudinal} particle velocity $\tilde{u}^{\parallel}(r,t)$ are perfectly <u>in-phase</u> with each other; hence {here} both the frequency domain complex radial specific acoustic impedance $\tilde{z}_{a_r}(r,\omega) = \tilde{p}(r,\omega)/\tilde{u}_r(r,\omega) (= \rho_o c \equiv z_o^{\parallel})$ and the frequency domain radial acoustic intensity $\tilde{I}_{a_r}(r,\omega) = \frac{1}{2} \tilde{p}(r,\omega) \cdot \tilde{u}_r^*(r,\omega)$ will be <u>purely real</u> quantities associated with active/propagating sound radiation in the form of these monochromatic plane waves.

However, in proximity to the point sound source $(r \approx 0)$, the <u>curvature</u> of the spherical *wavefronts* becomes increasingly important as $r \rightarrow 0$, one consequence of which is that the radial particle velocity $\tilde{u}_r(r,t)$ becomes increasingly more and more *imaginary/out-of-phase* with the complex over-pressure $\tilde{p}(r,t)$ as the <u>curvature</u> of the spherical *wavefronts* becomes more and more significant as $r \rightarrow 0$.

In the "intermediate field" region associated with an isotropic point sound source, this is where $kr \sim 1$, and the complex particle velocity $\tilde{u}_r(r,t)$ has ~ equal real and imaginary components, and hence is ~ 45° out of phase with the complex over-pressure $\tilde{p}(r,t)$.

Thus, for a complex sound field $\tilde{S}(\vec{r},t)$ associated with an *arbitrary* sound source, if the wavefronts are non-planar (such as would be expected in proximity to the sound source), the particle velocity $\tilde{u}(r,t)$ will acquire an increasingly large imaginary component as the wavefronts become increasingly non-planar, $\tilde{u}(r,t)$ will become increasingly disparate in phase with respect to the complex over-pressure $\tilde{p}(r,t)$. Consequently, the complex specific acoustic impedance $\tilde{z}_{a_r}(\vec{r},\omega)$ and complex acoustic intensity $\tilde{I}_{a_r}(r,\omega)$ will acquire increasingly reactive/non-propagating/imaginary components as the wavefronts become increasingly non-planar, in proximity to the sound source...