However, far from the sound source, when $r \to \infty$ $(kr \gg 1)$, then $|i/kr| = 1/kr \ll 1$ and $\tilde{u}_r(r,t)$ is predominantly real, and also *in-phase* with the complex over-pressure $\tilde{p}(r,t)$, and hence far from the point sound source, both the *frequency-domain* complex radial specific acoustic impedance $\tilde{z}_{a_r}(r, \omega) = \tilde{p}(r, \omega)/\tilde{u}_r(r, \omega)$ and **frequency-domain** radial acoustic intensity $\tilde{I}_{a_r}(r,\omega) = \frac{1}{2}\tilde{p}(r,\omega)\cdot \tilde{u}_r^*(r,\omega)$ will be largely *real* quantities associated with *active*/*propagating* sound radiation originating from the {distant} point sound source.

The "*near-field*" $(kr \ll 1)$ and the "*far-field*" $(kr \gg 1)$ behavior of the complex sound field $\tilde{S}(\vec{r},t)$ associated with an isotropic point sound source emitting monochromatic spherical outgoing waves can be easily understood from a physically-intuitive perspective:

Far from the point sound source $(r \rightarrow \infty)$, the spherical waves are to an increasing degree nearly perfect *plane waves* – the *curvature* of the spherical *wavefronts* becomes increasingly neglectable as *r* increases far from the point sound source. As we have seen in the previous P406 Lecture Notes 12, for a monochromatic plane/traveling wave propagating in "*free air*", the complex over-pressure $\tilde{p}(r,t)$ and {longitudinal} particle velocity $\tilde{u}^{\parallel}(r,t)$ are perfectly *in-phase* with each other; hence {here} both the frequency domain complex radial specific acoustic impedance $\tilde{z}_{a_r}(r, \omega) = \tilde{p}(r, \omega)/\tilde{u}_r(r, \omega)$ $\left(=\rho_o c = z_0^{\parallel}\right)$ and the frequency domain radial acoustic intensity $\tilde{I}_{a_r}(r, \omega) = \frac{1}{2} \tilde{p}(r, \omega) \cdot \tilde{a}_r^*(r, \omega)$ will be *purely* real quantities associated with *active***/***propagating* sound radiation in the form of these monochromatic plane waves.

However, in proximity to the point sound source $(r \approx 0)$, the *curvature* of the spherical *wavefronts* becomes increasingly important as $r \rightarrow 0$, one consequence of which is that the radial particle velocity $\tilde{u}_r(r,t)$ becomes increasingly more and more *imaginary/out-of-phase* with the complex over-pressure $\tilde{p}(r,t)$ as the *curvature* of the spherical *wavefronts* becomes more and more significant as $r \rightarrow 0$.

 In the "intermediate field" region associated with an isotropic point sound source, this is where $kr \sim 1$, and the complex particle velocity $\tilde{u}_r(r,t)$ has \sim equal real and imaginary components, and hence is $\sim 45^{\circ}$ out of phase with the complex over-pressure $\tilde{p}(r,t)$.

Thus, for a complex sound field $\tilde{S}(\vec{r},t)$ associated with an **arbitrary** sound source, if the wavefronts are non-planar (such as would be expected in proximity to the sound source), the particle velocity $\tilde{u}(r,t)$ will acquire an increasingly large imaginary component as the wavefronts become increasingly non-planar, $\tilde{u}(r,t)$ will become increasingly disparate in phase with respect to the complex over-pressure $\tilde{p}(r,t)$. Consequently, the complex specific acoustic impedance $\tilde{z}_a(\vec{r},\omega)$ and complex acoustic intensity $I_{a} (r, \omega)$ will acquire increasingly reactive/non-propagating/imaginary components as the wavefronts become increasingly non-planar, in proximity to the sound source…