

For a given (angular) frequency ω , in general, the <u>total/net</u> complex pressure amplitude is a sum over <u>all</u> modes – the <u>allowed/propagating</u> individual complex pressure eigenmodes $n \le n_{cutoff}$, where n_{cutoff} is the <u>highest</u> eigenmode number n such that

 $k_x = k_n = \sqrt{\left(\omega/c\right)^2 - \left(n_{cutoff}\pi/a\right)^2} > 0$, i.e. $n_{cutoff} = \inf\left\{\omega a/\pi c\right\}$ (= floor $\left\{\omega a/\pi c\right\}$), .and. the individual <u>non-propagating</u> modes $n > n_{cutoff}$:

$$\tilde{p}_{tot}(x, y, t) = \sum_{n=0}^{\infty} \tilde{p}_n(x, y, t) = \sum_{n=0}^{\infty} \tilde{A}_n \cos(n\pi y/a) e^{i(\omega t - k_n x)}$$

 $\{n.b.\ \underline{Far}\ \text{from the sound source, this reduces to the sum over } \underline{propagating}\ \text{modes}\ n \leq n_{\text{cutoff}}\ .\}$

The complex <u>time-domain</u> 2-D particle velocity $\vec{u}(\vec{r},t)$ associated with this problem is obtained via use of Euler's equation for inviscid fluid flow. Since $\tilde{p}(\vec{r},t) = \tilde{p}(x,y,t) \neq fcn(z)$, then $\nabla \tilde{p}(\vec{r},t) = \nabla \tilde{p}(x,y,t) = (\partial \tilde{p}(x,y,t)/\partial x)\hat{x} + (\partial \tilde{p}(x,y,t)/\partial y)\hat{y}$, thus the particle velocity can <u>only</u> be in the (x,y) direction(s), *i.e.* $\vec{u}(\vec{r},t) = \vec{u}(x,y,t) \neq fcn(z)$ since:

$$\frac{\partial \vec{u}(\vec{r},t)}{\partial t} = -\frac{1}{\rho_o} \vec{\nabla} p(\vec{r},t) \implies \frac{\partial \vec{u}(x,y,t)}{\partial t} = -\frac{1}{\rho_o} \left(\frac{\partial \tilde{p}(x,y,t)}{\partial x} \hat{x} + \frac{\partial \tilde{p}(x,y,t)}{\partial y} \hat{y} \right)$$

Euler's equation holds for each/every duct eigenmode n. With $\tilde{p}_n(x, y, t) = \tilde{A}_n \cos(n\pi y/a) e^{i(\omega t - k_n x)}$, the general form of the complex <u>time-domain</u> 2-D particle velocity for the n^{th} duct eigenmode is thus:

$$\vec{\tilde{u}}_n(x,y,t) = \frac{1}{\omega \rho_o} \tilde{A}_n \left[k_n \cos(n\pi y/a) \hat{x} - i(n\pi/a) \sin(n\pi y/a) \hat{y} \right] e^{i(\omega t - k_n x)}$$
where: $k_x = k_n = \sqrt{k^2 - (n\pi/a)^2} = \sqrt{(\omega/c)^2 - (n\pi/a)^2}$