The boundary condition on the pressure at the two infinite, rigid parallel walls in the  $\hat{y}$ -direction is that there are pressure <u>anti-nodes</u> at y = 0 and y = a. Mathematically, this requires Neumann-type boundary conditions on the walls, *i.e.*  $\partial \tilde{p}(x, y = 0, t)/\partial y = \partial \tilde{p}(x, y = a, t)/\partial y = 0$ , requiring cosine-type solutions for  $\tilde{Y}(y) = e^{\pm i k_y y}$ , i.e.  $\tilde{Y}(y) \sim e^{i k_y y} + e^{-i k_y y} \sim \cos k_y y$  such that:

$$\cos k_y y\Big|_{y=0,a} = 1 \text{ with } \partial \cos k_y y / \partial y\Big|_{y=0,a} = \sin k_y y\Big|_{y=0,a} = 0 \implies k_y a = n\pi, \ n = 0, 1, 2, 3...$$

Thus we see that:  $k_y a = n\pi$  or:  $k_y = n\pi/a$ , n = 0, 1, 2, 3... Thus, for <u>any</u> given frequency  $f = \omega/2\pi$ , there are an <u>infinite</u> number of possible solutions (*aka* eigenmodes) for this wave equation, each one of the general form:

$$\tilde{p}_n(x, y, t) = \tilde{A}_n \cos(n\pi y/a) e^{i(\omega t - k_n x)} \text{ where: } k_x = \sqrt{k^2 - k_y^2} \implies k_n = \sqrt{k^2 - (n\pi/a)^2}$$

The transverse pressure distribution ~  $\cos(n\pi y/a)$  for  $0 \le y \le a$  is a characteristic of the wall geometry associated with this problem – *i.e.* a <u>duct</u>; and one which is caused by multiple, <u>perfect</u> (i.e lossless) reflections of the pressure waves off of the duct walls as they propagate in the  $+\hat{x}$ -direction. The integer *n* denotes the {duct-} mode of propagation.

The n = 0 mode is known as the <u>axial</u> plane-wave eigenmode of propagation. The  $n \ge 1$  modes are collectively known as <u>transverse</u> duct eigenmodes. At a given frequency *f*, if a specific duct eigenmode *n* is excited, it may only propagate along the duct with a unique <u>axial</u> wavenumber given by  $k_n = \sqrt{k^2 - (n\pi/a)^2}$ .

Note that for each/every duct eigenmode *n* of propagation, there is an (angular) frequency  $\omega$  for which the axial wavenumber  $k_n = \sqrt{k^2 - (n\pi/a)^2} = \sqrt{(\omega/c)^2 - (n\pi/a)^2} = 0$ . The so-called <u>cutoff frequency</u> for the *n*<sup>th</sup> mode is:  $\omega_n^{cutoff} = n\pi c/a$  or:  $f_n^{cutoff} = nc/2a$ . Below this cutoff frequency, the duct eigenmode *n* cannot propagate – it becomes an <u>evanescent</u> mode because the axial eigen-wavenumber  $k_n$  becomes purely <u>imaginary</u> for  $f < f_n^{cutoff} = nc/2a - i.e.$  the duct eigenmode *n* is <u>exponentially</u> attenuated by a factor of  $e^{-k_n x}$  when  $f < f_n^{cutoff} = nc/2a$ .

A plot of the <u>dispersion curves</u> - axial wavenumber  $k_x = k_n vs$ . angular frequency  $\omega$  showing the effect of the cutoff frequency vs. mode number n = 0, 1, 2, 3, ... is shown in the figure below.