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Examples of Complex Sound Fields (Continued): 
 

Example # 3: Point Monopole Sound Source – Spherical Waves Propagating in “Free Air”: 
 

     Note: there exists no electromagnetic analog for this acoustic example, due to the manifest 
vectorial nature of the EM field – which is mediated at the microscopic level by the spin-1 photon.  
So-called electric monopole {E(0)} and/or magnetic monopole {M(0)} EM radiation associated  
e.g. with a spherically-symmetric, radially oscillating electric charge distribution 

   3, i t
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 and/or magnetic charge distribution    3, i t
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 cannot occur. 
 

     Imagine a spherically-symmetric, point sound source located at the origin of coordinates 0r 


 that 
isotropically emits monochromatic spherical acoustic waves into “free air”. The 3-D wave equation 
describing the behavior of the instantaneous/physical {i.e. purely real time-domain} over-pressure 

 ,p r t


at the space-time point  ,r t


 is an inhomogeneous, linear 2nd-order differential equation: 
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The gradient 


 and Laplacian 2   
 
  operators in 3-D spherical-polar  , ,r   coordinates are: 
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and: 
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The RHS of this 3-D wave equation is originates from    2 31 4r r  


 , thus  34 cosoB r t  


 

describes the point sound source located at the origin 0r 


, radiating sound isotropically into 4  
steradians. The function  3 r 

 is known as {Dirac’s} 3-D delta function, which has many intriguing 

mathematical properties, one of which is that the 3-D delta function  3 r 
 has an (infinite!) spike at 

the origin 0r 


 and is 0  elsewhere. Thus, we can equivalently write    3 3 0r r  
 

. Note that 

in spherical-polar coordinates  , ,r   , that    2
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 where    0r r    is the 1-D delta 

function in the radial (r) direction only. If we integrate the 3-D delta function over a volume V 
containing the origin 0r 


, e.g. integrate over all space: 
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If the volume V does not contain the origin 0r 


, then:   3 0
V

r dV 


. 




