3.) <u>The most general case</u>: A single monochromatic traveling plane wave (emitted from a sound source *e.g.* located at $x = -\infty$) propagating in the +*ve x*-direction and reflects, at normal incidence off of an infinite plane (located at $x = x_o > 0$) of <u>arbitrary</u> characteristics – *e.g.* it could be a "<u>passive</u>" surface that is only partially <u>reflecting/partially absorbing</u> (hence $|\tilde{R}| < 1$) and in principle could have associated with it *e.g.* a frequency-dependent phase shift upon reflection $-\pi \le \Delta \varphi_{BA}^o (x = x_o, \omega) \le \pi$, thereby producing a reflected wave that propagates in the –*ve x*-direction. This situation physically corresponds to the most general $\tilde{R} = |\tilde{R}| e^{i\Delta \varphi_{BA}^o}$. If the reflecting surface were "<u>active</u>", it is also possible that $|\tilde{R}| > 1$ (!), and depending on the details of the response of the "active" reflecting surface, the phase shift could be $-\pi \le \Delta \varphi_{BA}^o (x = x_o, \omega) \le \pi$.