Since $\tilde{p}(\vec{r},t) = \tilde{p}(\vec{r},\omega) \cdot e^{i\omega t}$ and $\tilde{\vec{u}}(\vec{r},t) = \tilde{\vec{u}}(\vec{r},\omega) \cdot e^{i\omega t}$, the complex 3-D vector <u>specific</u> acoustic impedance {here} is:

$$\frac{\tilde{z}_{a}(\vec{r},\omega) = \frac{\tilde{p}(\vec{r},\omega)}{\tilde{u}(\vec{r},\omega)} = \frac{\tilde{p}(\vec{r},\omega)}{-\frac{1}{\rho_{o}\omega} \left[\vec{\nabla}\varphi_{p}(\vec{r},\omega) - i\frac{\vec{\nabla}|\tilde{p}_{o}(\vec{r},\omega)|}{|\tilde{p}_{o}(\vec{r},\omega)|}\right]} = \frac{\rho_{o}c(\omega/c)}{\left[\vec{\nabla}\varphi_{p}(\vec{r},\omega) - i\frac{\vec{\nabla}|\tilde{p}_{o}(\vec{r},\omega)|}{|\tilde{p}_{o}(\vec{r},\omega)|}\right]}$$

The *purely <u>real</u>* quantity $z_o = \rho_o c = 1.204 (kg/m^3) \cdot 343 (m/s) \approx 413 (Pascal-sec/m = Rayls = \Omega_a)$ @ NTP is known as the *characteristic longitudinal specific acoustic impedance* of *free air*.

Its inverse is the *purely real characteristic longitudinal specific acoustic admittance* of <u>free air</u>: $y_o = 1/z_o = 1/\rho_o c \approx 1/413 \approx 2.42 \times 10^{-3} \left(\Omega_a^{-1}\right)$.

Note that c, ρ_0 , z_o and y_o are <u>not</u> constants, they are dependent e.g. on the air temperature, T as shown in the table below, for an ambient pressure of $P_{atm} = 1.0$ atmosphere:

Temperature (°C)	c (m/s)	$\rho_0 (kg/m^3)$	$z_o\left(\Omega_a ight)$	$y_o\left(\Omega_a^{-1}\right)$
-10	325.2	1.342	436.1	2.293×10 ⁻³
-5	328.3	1.317	432.0	2.315×10 ⁻³
0	331.3	1.292	428.4	2.334×10^{-3}
+5	334.3	1.269	424.3	2.357×10 ⁻³
+10	337.3	1.247	420.6	2.378×10^{-3}
+15	340.3	1.225	416.8	2.399×10 ⁻³
+20	343.2	1.204	413.2	2.420×10^{-3}
+25	346.1	1.184	409.8	2.440×10^{-3}
+30	349.0	1.165	406.3	2.461×10 ⁻³

For the specific case of a monochromatic 3-D traveling plane wave propagating e.g. in "free air", using $k = \omega/c$, where $k = \left| \vec{k} \right| = \sqrt{k_x^2 + k_y^2 + k_z^2} \ \left(m^{-1} \right)$ and using the relation $z_o \equiv \rho_o c$, we can rewrite the above expression for the complex 3-D vector <u>specific</u> acoustic impedance for the specific case of a monochromatic 3-D traveling plane wave propagating e.g. in "free air" as:

$$\tilde{\vec{z}}_{a}(\vec{r},\omega) = \frac{\tilde{p}(\vec{r},\omega)}{\tilde{\vec{u}}(\vec{r},\omega)} = -\frac{k}{\left[\vec{\nabla}\varphi_{p}(\vec{r},\omega) - i\frac{\vec{\nabla}|\tilde{p}_{o}(\vec{r},\omega)|}{|\tilde{p}_{o}(\vec{r},\omega)|}\right]} \cdot z_{o}$$

We can also write this as a dimensionless relation, and since $\tilde{z}_a(\vec{r},t) = \rho_o \tilde{c}_a(\vec{r},t)$, we have:

$$\frac{\ddot{\bar{z}}_{a}(\vec{r},\omega)}{z_{o}} = \frac{\ddot{\bar{c}}_{a}(\vec{r},\omega)}{c} = -\frac{k}{\left[\vec{\nabla}\varphi_{p}(\vec{r},\omega) - i\frac{\vec{\nabla}|\tilde{p}_{o}(\vec{r},\omega)|}{|\tilde{p}_{o}(\vec{r},\omega)|}\right]}$$