Derivation of Euler's Equation for Inviscid Fluid Flow from Newton's Second Law of Motion:

We can derive Euler's equation for inviscid fluid flow using Newton's 2nd law of motion $(\vec{F}_{net} = m\vec{a})$ and at the same time gain some useful insight into the physical meaning of particle velocity, $\vec{u}(\vec{r}, t)$.

Consider an infinitesimal volume element $V_o = 1(\mu m)^3$ bounded by the surface S_o centered on the space-time point (\vec{r},t) {= center of mass of the infinitesimal volume element V_o } containing {bone-dry} air at NTP, in thermal equilibrium with the air surrounding it, and with equilibrium volume mass density $\rho_o = 1.204 kg/m^3$, as shown in the figure below:

Rather than work in the fixed laboratory reference frame, we deliberately choose to work in a reference frame that is <u>co-moving</u> with the infinitesimal volume element V_o of air. Note that the pressure $p(\vec{r},t)$ associated with the infinitesimal volume element V_o as measured in the co-moving reference frame of the infinitesimal volume element V_o is the same pressure as measured in the fixed laboratory frame, this is because pressure $p(\vec{r},t)$ is intrinsically a <u>scalar</u> quantity.

The air {at NPT} contained within the infinitesimal volume element V_o is at a static / equilibrium absolute pressure of one atmosphere, *i.e.* $p_{atm} = 1.013 \times 10^5 Pascals$ and a finite temperature $T = 20^\circ C$ (= 293.15 K). At the microscopic level, the air molecules within the infinitesimal volume element V_o each have mean thermal energy $\langle E_{mol}^{th} \rangle = \frac{3}{2} k_B T$ where $k_B = 1.381 \times 10^{-23} Joules/Kelvin$ and collide randomly with each other, undergoing Brownian random-walk type motions.

Suppose that a sound wave with over-pressure amplitude $|p(\vec{r},t)| \ll 100 RMS Pascals$ { $SPL \ll 134 dB$ } is incident on the {initially static} air contained within the infinitesimal volume element V_o . When the over-pressure amplitude $p(\vec{r},t)$ is instantaneously greater (less) than the ambient pressure p_{atm} , the air contained within V_o momentarily compresses (expands), respectively. Note that conceptually, the surface S_o that bounds the infinitesimal volume element V_o is endowed with "magical" properties, in that it is a <u>fictitious</u>, <u>Gaussian-type</u> surface (*e.g.* as commonly used in *E*&*M* problems), the nature of the bounding surface S_o also is one which <u>expands</u> and/or <u>contracts</u> as the air contained within the infinitesimal volume element V_o expands or contracts. Operationally this means we need only keep track of linear/leading-order terms in various expansions...