Derivation of Euler's Equation for Inviscid Fluid Flow from Newton's Second Law of Motion:

We can derive Euler's equation for inviscid fluid flow using Newton's $2nd$ law of motion $(\vec{F}_{net} = m\vec{a})$ and at the same time gain some useful insight into the physical meaning of particle velocity, $\vec{u}(\vec{r},t)$.

Consider an infinitesimal volume element $V_0 = 1(\mu m)^3$ bounded by the surface S_0 centered on the space-time point (\vec{r}, t) {= <u>center of mass</u> of the infinitesimal volume element V_o } containing {bone-dry} air at NTP, in thermal equilibrium with the air surrounding it, and with equilibrium volume mass density $\rho_o = 1.204 \frac{kg}{m^3}$, as shown in the figure below:

 Rather than work in the fixed laboratory reference frame, we deliberately choose to work in a reference frame that is co-moving with the infinitesimal volume element *Vo* of air. Note that the pressure $p(\vec{r},t)$ associated with the infinitesimal volume element V_0 as measured in the comoving reference frame of the infinitesimal volume element *Vo* is the same pressure as measured in the fixed laboratory frame, this is because pressure $p(\vec{r},t)$ is intrinsically a <u>scalar</u> quantity.

The air $\{at \, NPT\}$ contained within the infinitesimal volume element V_o is at a static / equilibrium absolute pressure of one atmosphere, *i.e.* $p_{\text{atm}} = 1.013 \times 10^5$ Pascals and a finite temperature $T = 20^{\circ}$ *C* (= 293.15 *K*). At the microscopic level, the air molecules within the infinitesimal volume element *V*_{*o*} each have mean thermal energy $\left\langle E_{mol}^{th}\right\rangle = \frac{3}{2}k_B T$ where $k_B = 1.381 \times 10^{-23}$ *Joules*/Kelvin and collide randomly with each other, undergoing Brownian random-walk type motions.

Suppose that a sound wave with over-pressure amplitude $|p(\vec{r},t)| \ll 100$ RMS Pascals $\{SPL \ll 134 dB\}$ is incident on the {initially static} air contained within the infinitesimal volume element *V_o*. When the over-pressure amplitude $p(\vec{r},t)$ is instantaneously greater (less) than the ambient pressure p_{atm} , the air contained within V_o momentarily compresses (expands), respectively. Note that conceptually, the surface S_0 that bounds the infinitesimal volume element V_0 is endowed with "magical" properties, in that it is a fictitious, Gaussian-type surface (*e*.*g*. as commonly used in *E&M* problems), the nature of the bounding surface S_0 also is one which expands and/or contracts as the air contained within the infinitesimal volume element *Vo* expands or contracts. Operationally this means we need only keep track of linear/leading-order terms in various expansions…