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     Exploiting the analog of the concept of electrical “voltage” – i.e. a difference in electrical 

potential    - b bb a b a
e e e ea a

r d E r d          
      we can also define a complex 

particle velocity potential difference (aka particle velocity “voltage”) as: 
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     From the mass continuity equation:     1, ,
o
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    and:    , ,uu r t r t 

   , 

then for “everyday” audio sound over-pressure amplitudes in {bone-dry} air at NTP of 

 , 100  p r t RMS Pascals
   { 134 SPL dB }, then:     1, ,
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     , which 

can be written as     2 1, ,
ou r t r t t      

   ; this is Poisson’s equation for the complex 

particle velocity potential!  
 

     Thus, we can thus solve {certain classes of} acoustical physics problems simply by solving 
Poisson’s equation     2 1, ,

ou r t r t t      
    for the complex particle velocity potential 

 ,u r t
 , subject to the boundary condition(s) {and/or initial conditions at t = 0} associated with 

the specific problem using techniques/methodology similar to that used for solving Poisson’s 
equation  2 0e r  

  in E&M problems! 
 

Note that {again} using the {linearized} adiabatic relationship between complex overpressure 
and mass density,    2
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    we also have:    2
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   . Hence for 

“everyday” audio sound fields, the above differential equation for the complex velocity potential 
can equivalently be written as:     2
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     If     , ,uu r t r t 
   , the {linearized} Euler equation can be written as: 
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      , which implies that: 
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hence that:  
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 . From above, we also have: 
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 , thus: 
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 , but from the above Poisson equation:    2 ,1
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thus, we obtain the wave equation for the complex velocity potential: 
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