Exploiting the analog of the concept of electrical "voltage" – *i*.*e*. a difference in electrical potential $\Delta \Phi_e^{b-a} \equiv \Phi_e^b - \Phi_e^a = \int_a^b \vec{\nabla} \Phi_e(\vec{r}) \cdot d\vec{\ell} = -\int_a^b \vec{E}(\vec{r}) \cdot d\vec{\ell}$ we can also define a complex particle velocity potential *difference* (*aka* particle velocity "voltage") as:

$$
\Delta \tilde{\Phi}_{u}^{b-a}(t) \equiv \tilde{\Phi}_{u}^{b}(t) - \Phi_{u}^{a}(t) = \int_{a}^{b} \vec{\nabla} \tilde{\Phi}_{u}(\vec{r},t) \cdot d\vec{\ell} = -\int_{a}^{b} \tilde{\vec{u}}(\vec{r},t) \cdot d\vec{\ell}
$$

From the mass continuity equation: $\vec{\nabla} \cdot \vec{\tilde{u}}(\vec{r},t) = -\frac{1}{\rho_o} \left(\partial \tilde{\rho}(\vec{r},t) / \partial t \right)$ and: $\vec{\tilde{u}}(\vec{r},t) = \vec{\nabla} \tilde{\Phi}_u(\vec{r},t)$, then for "everyday" audio sound over-pressure amplitudes in {bone-dry} air at NTP of $|\tilde{p}(\vec{r},t)| \ll 100$ *RMS Pascals* { *SPL* \ll 134 *dB* }, then: $\vec{\nabla} \cdot \vec{\nabla} \tilde{\Phi}_u(\vec{r},t) = -\frac{1}{\rho_0} (\partial \tilde{\rho}(\vec{r},t)/\partial t)$, which can be written as $\nabla^2 \tilde{\Phi}_u(\vec{r},t) = -\frac{1}{\rho_0} \left(\frac{\partial \tilde{\rho}(\vec{r},t)}{\partial t} \right)$; this is Poisson's equation for the complex particle velocity potential!

 Thus, we can thus solve {certain classes of} acoustical physics problems simply by solving Poisson's equation $\nabla^2 \tilde{\Phi}_u(\vec{r},t) = -\frac{1}{\rho_o} \left(\partial \tilde{\rho}(\vec{r},t) / \partial t \right)$ for the complex particle velocity potential $\tilde{\Phi}_u(\vec{r},t)$, subject to the boundary condition(s) {and/or initial conditions at $t = 0$ } associated with the specific problem using techniques/methodology similar to that used for solving Poisson's equation $\nabla^2 \tilde{\Phi}_e(\vec{r}) \neq 0$ in E&M problems!

Note that {again} using the {linearized} adiabatic relationship between complex overpressure and mass density, $\tilde{\rho}(\vec{r},t) = \frac{1}{c^2} \tilde{p}(\vec{r},t)$ we also have: $\partial \tilde{\rho}(\vec{r},t)/\partial t \approx \frac{1}{c^2} \partial \tilde{p}(\vec{r},t)/\partial t$. Hence for "everyday" audio sound fields, the above differential equation for the complex velocity potential can equivalently be written as: $\nabla^2 \tilde{\Phi}_u(\vec{r},t) = -\frac{1}{\rho_0 c^2} \left(\frac{\partial \tilde{p}}{\partial r}(\vec{r},t) / \partial t \right)$.

If $\vec{u}(\vec{r},t) = \vec{\nabla}\tilde{\Phi}_u(\vec{r},t)$, the {linearized} Euler equation can be written as: $\frac{u(\vec{r},t)}{2} = \vec{\nabla} \frac{\partial \Phi_u(\vec{r},t)}{2} \approx -\frac{1}{2} \vec{\nabla} \tilde{p}(\vec{r},t)$ *o* $\tilde{p}(\vec{r},t$ *t* ∂t ρ $\partial \nabla \tilde{\Phi}_u(\vec{r},t) = \partial \tilde{\Phi}$ $=\nabla \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2$ ∂t ∂ $\vec{\nabla}\tilde{\Phi}_u(\vec{r},t) = \vec{\nabla}\frac{\partial \tilde{\Phi}_u(\vec{r},t)}{\partial \vec{\nabla}^2} = -\frac{1}{2}\vec{\nabla}\tilde{p}(\vec{r},t)$, which implies that: $\frac{\partial \tilde{\Phi}_u(\vec{r},t)}{\partial \vec{\nabla}^2} = -\frac{1}{2}\tilde{p}(\vec{r},t)$ *o* \vec{r}, t $\tilde{p}(\vec{r},t)$ $\frac{\partial \tilde{\Phi}_u(\vec{r},t)}{\partial t} \approx -\frac{1}{\rho_o} \tilde{p}(\vec{r},t)$, and hence that: $\frac{\partial^2 \tilde{\Phi}_u(\vec{r},t)}{\partial t^2} \approx -\frac{1}{2} \frac{\partial \tilde{p}(\vec{r},t)}{\partial t}$ $u\left(\vec{r},t\right)$, 1 $\partial\widetilde{p}\left(\vec{r},t\right)$ *o* \vec{r},t 1 $\partial \tilde{p}(\vec{r},t)$ $\frac{\partial^2 \tilde{\Phi}_u(\vec{r},t)}{\partial t^2} \approx -\frac{1}{\rho_o} \frac{\partial \tilde{p}(\vec{r},t)}{\partial t}$. From above, we also have: $\frac{\partial \tilde{p}(\vec{r},t)}{\partial t} \approx c^2 \frac{\partial \tilde{\rho}(\vec{r},t)}{\partial t}$ *t t* $\partial \tilde{p}(\vec{r},t) = \frac{1}{2} \partial \tilde{\rho}$ ∂t ∂ $\frac{\tilde{p}(\vec{r},t)}{\tilde{p}(\vec{r},t)} \approx c^2 \frac{\partial \tilde{\rho}(\vec{r},t)}{\tilde{p}(\vec{r},t)},$ thus: $^{2}\tilde{\Phi}_{u}(\vec{r},t)$ $c^{2}\partial\tilde{\rho}(\vec{r},t)$ 2 $\partial_{u}(\vec{r},t)$ c^{2} $\partial \tilde{\rho}(\vec{r},t)$ *o* (\vec{r},t) $c^2 \partial \tilde{\rho}(\vec{r},t)$ t^2 ρ ∂t ρ $\frac{\partial^2 \tilde{\Phi}_u(\vec{r},t)}{\partial t^2} = -\frac{c^2}{\rho_o} \frac{\partial \tilde{\rho}(\vec{r},t)}{\partial t}$, but from the above Poisson equation: $\nabla^2 \tilde{\Phi}_u(\vec{r},t) = -\frac{1}{\rho_o} \frac{\partial \tilde{\rho}(\vec{r},t)}{\partial t}$ *o* \vec{r}, t \vec{r}, t *t* ρ $\rho_.$ ∂ $\nabla^2 \tilde{\Phi}_u(\vec{r},t) = \partial$ $\tilde{\Phi}_{n}(\vec{r},t) = -\frac{1}{2\pi i} \frac{\partial \tilde{\rho}(\vec{r},t)}{\partial \vec{r}},$ thus, we obtain the wave equation for the complex velocity potential:

$$
\nabla^2 \tilde{\Phi}_u(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2 \tilde{\Phi}_u(\vec{r},t)}{\partial t^2} = 0
$$

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved. -8-