What is the *curl* of the 3-D particle velocity field, $\vec{\nabla} \times \vec{\tilde{u}}(\vec{r}, t) = ?$?? Physically, the *curl* of a *velocity* field is often associated *e*.*g*. with a *rotation* and/or a velocity *shear* – such as the velocity field $\vec{v}(\vec{r},t)$ associated with a whirlpool, or a vortex in water. For this reason, the *curl* of a velocity field $\nabla \times \vec{v}(\vec{r},t)$ is sometimes known as/called the *vorticity*.

 However, in an *inviscid* fluid (*i*.*e*. one which is *dissipationless*/has *zero* viscosity) such as air, the *vorticity* $\nabla \times \vec{v}(\vec{r},t) = 0$, because an *inviscid* fluid *cannot* support velocity *shears* and/or *vortices* in the *inviscid* fluid. We can explicitly show/prove that $\vec{\nabla} \times \vec{\hat{u}}(\vec{r},t) = 0$ for "everyday" audio sound over-pressure amplitudes in air at NTP of $|\tilde{p}(\vec{r},t)| \ll 100$ RMS Pascals. First, we take the partial derivative of $\vec{\nabla} \times \vec{\tilde{u}}(\vec{r}, t)$ with respect to time:

$$
\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{\tilde{u}} (\vec{r}, t)) = \vec{\nabla} \times \frac{\partial \vec{\tilde{u}} (\vec{r}, t)}{\partial t}
$$

However, the Euler equation for inviscid fluid flow is: $\frac{\partial \tilde{u}(\vec{r},t)}{\partial \vec{r}} = -\frac{1}{2} \vec{\nabla} \tilde{p}(\vec{r},t)$ *o* \tilde{u} (\vec{r} , t $\tilde{p}(\vec{r},t)$ t ρ ∂ $=-\frac{1}{\sqrt{2}}\nabla$ ∂ $\frac{\vec{a}(\vec{r},t)}{dt} = -\frac{1}{\nabla \tilde{p}(\vec{r},t)}$, thus:

$$
\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{\tilde{u}}(\vec{r},t)) = \vec{\nabla} \times \frac{\partial \vec{\tilde{u}}(\vec{r},t)}{\partial t} = -\frac{1}{\rho_o} (\vec{\nabla} \times \vec{\nabla} \tilde{p}(\vec{r},t))
$$

However, the *curl* of the *gradient* of any *arbitrary* scalar field *f r t*, is also *always* zero, *i.e.* $\vec{\nabla} \times \vec{\nabla} f(\vec{r},t) \equiv 0$, thus:

$$
\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{\tilde{u}} (\vec{r}, t)) = \vec{\nabla} \times \frac{\partial \vec{\tilde{u}} (\vec{r}, t)}{\partial t} = -\frac{1}{\rho_o} (\vec{\nabla} \times \vec{\nabla} \tilde{p} (\vec{r}, t)) = 0
$$

This tells us that: $\vec{\nabla} \times \vec{\tilde{u}}(\vec{r}, t) = constant \neq \text{for}(t)$. Thus, if for any time $-\infty \leq t \leq +\infty$, there is *no* vorticity in the inviscid fluid ($\vec{\nabla} \times \vec{\tilde{u}}(\vec{r}, t) = 0$), then it must *remain* = 0 for *all* time. *Q.E.D.*

 If we take the time derivative of both sides of the {linearized} mass continuity equation, and the divergence of both sides of the {linearized} Euler equation:

$$
\vec{\nabla} \cdot \frac{\partial \vec{\tilde{u}}(\vec{r},t)}{\partial t} \simeq -\frac{1}{\rho_o} \frac{\partial^2 \tilde{\rho}(\vec{r},t)}{\partial t^2} = -\frac{1}{\rho_o c^2} \frac{\partial^2 \tilde{p}(\vec{r},t)}{\partial t^2}
$$
 and:
$$
\vec{\nabla} \cdot \frac{\partial \vec{\tilde{u}}(\vec{r},t)}{\partial t} \simeq -\frac{1}{\rho_o} \vec{\nabla} \cdot \vec{\nabla} \tilde{p}(\vec{r},t) = -\frac{1}{\rho_o} \nabla^2 \tilde{p}(\vec{r},t)
$$

and then using the {linearized} adiabatic relationship between complex overpressure, \tilde{p} and mass density, $\tilde{\rho}(\vec{r},t) = \frac{1}{c^2} \tilde{p}(\vec{r},t)$, we also have the relation: $\partial \tilde{\rho}(\vec{r},t)/\partial t \approx \frac{1}{c^2} \partial \tilde{p}(\vec{r},t)/\partial t$. Hence, we obtain the {linearized} wave equation for complex overpressure:

$$
\nabla^2 \tilde{p}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2 \tilde{p}(\vec{r},t)}{\partial t^2} = 0
$$

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved. -6-