For "everyday" harmonic/single-frequency sound fields, if the 3-D vector complex <u>frequency-domain</u> particle velocity amplitude $\vec{u}(\vec{r},\omega)$ is known/measured, then since the 3-D vector complex <u>time-domain</u> particle velocity $\vec{u}(\vec{r},t) = \vec{u}(\vec{r},\omega) \cdot e^{i\omega t}$, and the 3-D vector complex <u>time-domain</u> particle displacement $\vec{\xi}(\vec{r},t) = \vec{\xi}(\vec{r},\omega) \cdot e^{i\omega t}$, where: $\vec{\xi}(\vec{r},\omega)$ is the 3-D vector complex complex <u>frequency-domain</u> particle displacement amplitude, and since $\vec{u}(\vec{r},t) = \partial \vec{\xi}(\vec{r},t)/\partial t$, then:

$$\vec{\xi}(\vec{r},t) = \int \vec{\tilde{u}}(\vec{r},t)dt = \int \vec{\tilde{u}}(\vec{r},\omega) \cdot e^{i\omega t}dt = \vec{\tilde{u}}(\vec{r},\omega) \int \cdot e^{i\omega t}dt = \frac{1}{i\omega}\vec{\tilde{u}}(\vec{r},\omega) \cdot e^{i\omega t}dt$$

But since: $\vec{\xi}(\vec{r},t) = \vec{\xi}(\vec{r},\omega) \cdot e^{i\omega t}$, we see that: $\vec{\xi}(\vec{r},\omega) = \frac{1}{i\omega}\vec{u}(\vec{r},\omega) = -i\frac{1}{\omega}\vec{u}(\vec{r},\omega)$

Likewise, since: $\vec{\tilde{a}}(\vec{r},t) = \frac{\partial \vec{\tilde{u}}(\vec{r},t)}{\partial t} = \frac{\partial \vec{\tilde{u}}(\vec{r},\omega) \cdot e^{i\omega t}}{\partial t} = \vec{\tilde{u}}(\vec{r},\omega) \cdot \frac{\partial e^{i\omega t}}{\partial t} = i\omega \cdot \vec{\tilde{u}}(\vec{r},\omega) \cdot e^{i\omega t}$

But since: $\vec{a}(\vec{r},t) = \vec{a}(\vec{r},\omega) \cdot e^{i\omega t}$, we also see that: $\vec{a}(\vec{r},\omega) = i\omega \cdot \vec{u}(\vec{r},\omega)$