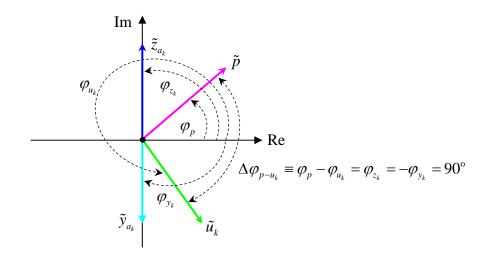
We also see that for harmonic/single-frequency sound fields the z_k -phase: $\varphi_{z_k} = \Delta \varphi_{p-u_k} \equiv \varphi_p - \varphi_{u_k}$ whereas the y_k -phase: $\varphi_{y_k} = \Delta \varphi_{u_k-p} \equiv \varphi_{u_k} - \varphi_p = -(\varphi_p - \varphi_{u_k}) = -\varphi_{z_k}$, in analogy to similar relations obtained *e.g.* for complex *AC* electrical circuits!

The phasor relation(s) in the complex plane for $\tilde{p} = p_r + ip_i = |\tilde{p}|e^{i\varphi_p}$, $\tilde{u}_k = u_{r_k} + iu_{i_k} = |\tilde{u}_k|e^{i\varphi_{u_k}}$, $\tilde{z}_{a_k} = z_{a_k}^r + iz_{a_k}^i = |\tilde{z}_{a_k}|e^{i\varphi_{z_k}}$ and $\tilde{y}_{a_k} = y_{a_k}^r + iy_{a_k}^i = |\tilde{y}_{a_k}|e^{i\varphi_{y_k}}$ are shown in the figure below, for the special/limiting case of $\Delta \varphi_{p-u_k} \equiv \varphi_p - \varphi_{u_k} = \varphi_{z_k} = -\varphi_{y_k} = 90^\circ$, where the impedance phasor component \tilde{z}_{a_k} is back-to-back with the admittance phasor component \tilde{y}_{a_k} {*n.b.* for the more general case where $\Delta \varphi_{p-u_k} \equiv \varphi_p - \varphi_{u_k} = \varphi_{z_k} = -\varphi_{y_k} \neq 90^\circ$, then \tilde{z}_{a_k} and \tilde{y}_{a_k} are <u>not</u> back-to-back}:



If we now take the <u>cosine</u> of the two phases φ_{z_k} and φ_{y_k} :

$$\cos \varphi_{z_k} = \cos \Delta \varphi_{p-u_k} \equiv \cos \left(\varphi_p - \varphi_{u_k} \right) \text{ and:}$$

$$\cos \varphi_{y_k} = \cos \Delta \varphi_{u_k-p} \equiv \cos \left(\varphi_{u_k} - \varphi_p \right) = \cos \left[-\varphi_{z_k} \right] = \cos \varphi_{z_k} \left(\cos(x) \text{ even fcn}(x) \right)$$

We see that when: $\cos \varphi_{z_k} = \cos \varphi_{y_k} = +1$ that: $\Delta \varphi_{p-u_k} = -\Delta \varphi_{u_k-p} = 0^\circ$, *i.e.* that: $\varphi_p = \varphi_{u_k}$. When: $\cos \varphi_{z_k} = \cos \varphi_{y_k} = 0$ that: $\Delta \varphi_{p-u_k} = -\Delta \varphi_{u_k-p} = \pm 90^\circ$, *i.e.* that: $\varphi_p = \varphi_{u_k} \pm 90^\circ$. When: $\cos \varphi_{z_k} = \cos \varphi_{y_k} = -1$ that: $\Delta \varphi_{p-u_k} = -\Delta \varphi_{u_k-p} = \pm 180^\circ$, *i.e.* that: $\varphi_p = \varphi_{u_k} \pm 180^\circ$.

-29-©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.