For a harmonic sound field, if the complex 3-D vector *specific* admittance *y*_{*a*} $(\vec{r}, \omega) = \tilde{u}(\vec{r}, \omega) / \tilde{p}(\vec{r}, \omega) = 1/\tilde{z}_a(\vec{r}, \omega)$ at the point \vec{r} happens to be very **high**, for a fixed complex scalar over-pressure $\tilde{p}(\vec{r}, \omega)$, this tells us that the complex 3-D vector particle velocity $\vec{u}(\vec{r}, \omega)$ at that point must therefore be very *large*, and hence the corresponding complex 3-D vector acoustic mass current density $\vec{\tilde{J}}_a(\vec{r}, \omega) = \rho_o \vec{\tilde{u}}(\vec{r}, \omega)$ at that point must also be very <u>large</u>.

 Conversely, if for a harmonic sound field the complex 3-D vector *specific* acoustic conversely, if for a narmonic sound field the complex 3-D vector **specific** acoustic
admittance $\vec{y}_a(\vec{r}, \omega) = \vec{u}(\vec{r}, \omega)/\vec{p}(\vec{r}, \omega) = 1/\vec{z}_a(\vec{r}, \omega)$ at the point \vec{r} happens to be very <u>low</u>, for a fixed complex scalar over-pressure $\tilde{p}(\vec{r}, \omega)$, this tells us that the complex 3-D vector particle velocity $\vec{u}(\vec{r}, \omega)$ at that point must therefore be very *small*, and hence the corresponding complex 3-D vector acoustic mass current density $\overrightarrow{\tilde{J}}_a(\vec{r}, \omega) = \rho_o \overrightarrow{\tilde{u}}(\vec{r}, \omega)$ at that point must also be very *small*.

The Real and Imaginary Components of Complex 3-D Vector *Specific* **Acoustic Immittances:**

As in the case for *AC* electrical circuits, the complex scalar electrical impedance \tilde{Z}_e and complex scalar electrical admittance $\tilde{Y}_e = 1/\tilde{Z}_e$ can be written out explicitly in terms of their real and imaginary components:

 $\tilde{Z}_e = R_e + iX_e \left(\Omega \right)$ where $R_e = \text{Re} \{ \tilde{Z}_e \}$ is the *<u>resistance</u>* and $X_e = \text{Im} \{ \tilde{Z}_e \}$ is the *<u>reactance</u>*. $\tilde{Y}_e \equiv G_e + iB_e \left(\Omega^{-1} \right)$ where $G_e = \text{Re} \left\{ \tilde{Y}_e \right\}$ is the *conductance* and $B_e = \text{Im} \left\{ \tilde{Y}_e \right\}$ is the *susceptance*.

Similarly, for the case a complex harmonic sound field $\tilde{S}(\vec{r})$, the complex 3-D vector *specific* acoustic impedance $\vec{\zeta}_a(\vec{r})$ and complex 3-D *specific* acoustic admittance $\vec{\zeta}_a(\vec{r}) = 1/\vec{\zeta}_a(\vec{r})$ can be written out explicitly in terms of their real and imaginary components:

$$
\vec{\tilde{z}}_a(\vec{r}, \omega) = \vec{r}_a(\vec{r}, \omega) + i\vec{\chi}_a(\vec{r}, \omega) \quad (\Omega_a)
$$
 where:
\n
$$
\vec{r}_a(\vec{r}, \omega) = \text{Re}\{\vec{\tilde{z}}_a(\vec{r}, \omega)\} \text{ is the 3-D specific acoustic resistance at the point \vec{r} and:
\n
$$
\chi_a(\vec{r}, \omega) = \text{Im}\{\tilde{z}_a(\vec{r}, \omega)\} \text{ is the 3-D specific acoustic reactance at the point \vec{r} .
$$

\n
$$
\vec{\tilde{y}}_a(\vec{r}, \omega) = \vec{g}_a(\vec{r}, \omega) + i\vec{b}_a(\vec{r}, \omega) \quad (\Omega_a^{-1}) \text{ where:}
$$

\n
$$
\vec{g}_a(\vec{r}, \omega) = \text{Re}\{\vec{\tilde{y}}_a(\vec{r}, \omega)\} \text{ is the 3-D specific acoustic conductance at the point \vec{r} and:
\n
$$
\vec{b}_a(\vec{r}, \omega) = \text{Im}\{\vec{\tilde{y}}_a(\vec{r}, \omega)\} \text{ is the 3-D specific acoustic susceptance at the point \vec{r} .
$$
$$
$$

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved. -25-