The <u>non-linear</u> response in air for <u>large</u> pressure variations $(SPL's \ge 134 \, dB)$ arises from the <u>non-linear</u> relation between the pressure and the density of air. For <u>adiabatic</u> changes in air pressure (relevant for sound propagation in air for audio frequency sounds {*i.e.* $f < 20 \, KHz$ }): $P(\vec{r},t) = P_{atm} + p(\vec{r},t) = constant \times \rho^{\gamma}(\vec{r},t)$ {where for air, $\gamma \equiv C_P/C_V \approx 7/5 = 1.4$ }. The relation between {absolute} pressure $P(\vec{r},t)$ and volume mass density $\rho^{\gamma}(\vec{r},t)$ of air is shown in the figure below, where equilibrium (*i.e.* no sound is present) $P_{atm} \equiv P_o$ and $\rho_{atm} \equiv \rho_o$:

We can express the instantaneous absolute pressure $P(\vec{r},t)$ as a Taylor series expansion about the equilibrium pressure $P_{atm} \equiv P_o$ and mass density $\rho_{atm} \equiv \rho_o$ configuration:

$$P(\vec{r},t) = P_o + \frac{\partial P(\vec{r},t)}{\partial \rho(\vec{r},t)}\Big|_{\rho=\rho_o} \left(\rho(\vec{r},t) - \rho_o\right) + \frac{1}{2} \frac{\partial^2 P(\vec{r},t)}{\partial \rho^2(\vec{r},t)}\Big|_{\rho=\rho_o} \left(\rho(\vec{r},t) - \rho_o\right)^2 + \dots$$
$$= P_o + \frac{\partial P(\vec{r},t)}{\partial \rho(\vec{r},t)}\Big|_{\rho=\rho_o} \delta\rho(\vec{r},t) + \frac{1}{2} \frac{\partial^2 P(\vec{r},t)}{\partial \rho^2(\vec{r},t)}\Big|_{\rho=\rho_o} \left(\delta\rho(\vec{r},t)\right)^2 + \dots$$

For <u>small</u> pressure variations $(|\tilde{p}(\vec{r},t)| \ll P_{atm})$ to <u>first</u> order, a <u>linear</u> relationship exists between over-pressure $p(\vec{r},t)$ and the volume mass density $\rho(\vec{r},t)$ for air:

$$p(\vec{r},t) = P(\vec{r},t) - P_o = \delta P(\vec{r},t) \simeq \frac{\partial P(\vec{r},t)}{\partial \rho(\vec{r},t)} \bigg|_{\rho = \rho_o} \delta \rho(\vec{r},t)$$

-3-©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.