What is a *Fourier transform*?

For <u>continuous</u> complex *time-domain* functions $\tilde{f}(t)$, the *Fourier transform* of the complex *time-domain* function $\tilde{f}(t)$ to the complex *frequency-domain* is: $\begin{bmatrix} \tilde{f}(\omega) \equiv \int_{-\infty}^{+\infty} \tilde{f}(t)e^{-i\omega t}dt \end{bmatrix}$ where t is treated as a {dummy} variable in the integration over {all} time, from $-\infty \le t \le +\infty$.

The <u>inverse</u> Fourier transform of a <u>continuous</u> complex frequency-domain function $\tilde{f}(\omega)$ to the time-domain is: $\tilde{f}(t) \equiv \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(\omega) e^{+i\omega t} d\omega$ where $\omega = 2\pi f$ is treated as a {dummy} variable in the integration over {all negative .and. positive} angular frequencies: $-\infty \le \omega \le +\infty$.

Note also that the factor of $1/2\pi$ appears here pre-multiplying the latter integral over the angular frequency variable ω because we are using the angular frequency $\omega \equiv 2\pi f$ in the integral rather than the frequency f itself as a {dummy} variable of integration – technically speaking, frequency f (*sec*⁻¹) and time t (*seconds*) are <u>true</u> Fourier conjugate variables of each other, and <u>not</u> angular frequency $\omega = 2\pi f$ (radians/sec⁻¹) and time t (seconds).

For monochromatic/single-frequency (*aka* harmonic) sound fields the relationship between "generic" complex *time-domain* vs. complex *frequency-domain* quantities is simply given by $\tilde{f}(t) = \tilde{f}(\omega) \cdot e^{i\omega t}$. Thus, *e.g.* the relations between complex *time-domain* vs. complex *frequency-domain* scalar over-pressure and/or 3-D complex vector particle velocity are:

$$\tilde{p}(t) = \tilde{p}(\omega) \cdot e^{i\omega t} = \left| \tilde{p}(\omega) \right| \cdot e^{i\varphi_{p}(\omega)} \cdot e^{i\omega t}$$

and:

$$\vec{\tilde{u}}(t) = \vec{\tilde{u}}(\omega) \cdot e^{i\omega t} = \left(\tilde{u}_x(\omega)\hat{x} + \tilde{u}_y(\omega)\hat{y} + \tilde{u}_z(\omega)\hat{z}\right) \cdot e^{i\omega t}$$
$$= \left(\left|\tilde{u}_x(\omega)\right| \cdot e^{i\varphi_{u_x}(\omega)}\hat{x} + \left|\tilde{u}_y(\omega)\right| \cdot e^{i\varphi_{u_y}(\omega)}\hat{y} + \left|\tilde{u}_z(\omega)\right| \cdot e^{i\varphi_{u_z}(\omega)}\hat{z}\right) \cdot e^{i\omega t}$$

There are several useful relations associated with Fourier transforms which we list here:

	Time-Domain:		Frequency Domain:
Linearity:	$\tilde{h}(t) = a\tilde{f}(t) + b\tilde{g}(t)$	\Rightarrow	$\tilde{h}(\omega) = a\tilde{f}(\omega) + b\tilde{g}(\omega)$
Translation:	$\tilde{h}(t) = \tilde{f}(t - t_{o})$	\Rightarrow	$ ilde{h}(\omega) = ilde{f}(\omega)e^{i\omega t_{ m o}}$
Modulation:	$\tilde{h}(t) = \tilde{f}(t)e^{i\omega_{0}t}$	\Rightarrow	$\tilde{h}(\omega) = \tilde{f}(\omega - \omega_{o})$
Scaling:	$\tilde{h}(t) = \tilde{f}(at)$	\Rightarrow	$\tilde{h}(\omega) = \frac{1}{ a } \tilde{f}\left(\frac{\omega}{a}\right)$
Conjugation:	$\tilde{h}(t) = \tilde{f}^{*}(t)$	\Rightarrow	$\tilde{h}(\omega) = \tilde{f}^*(-\omega)$

-17-©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.