The total *net* 3-D vector force per unit volume is therefore:

$$\vec{f}_{net}(\vec{r},t) = f_{net_x}(\vec{r},t)\hat{x} + f_{net_y}(\vec{r},t)\hat{y} + f_{net_z}(\vec{r},t)\hat{z}$$
$$= -\frac{\partial p(\vec{r},t)}{\partial x}\hat{x} - \frac{\partial p(\vec{r},t)}{\partial y}\hat{y} - \frac{\partial p(\vec{r},t)}{\partial y}\hat{z} = -\underbrace{\left(\frac{\partial}{\partial x}\hat{x} - \frac{\partial}{\partial y}\hat{y} - \frac{\partial}{\partial y}\hat{z}\right)}_{=\vec{\nabla}}p(\vec{r},t) = -\vec{\nabla}p(\vec{r},t)$$

Thus we have: $\vec{a}(\vec{r},t) = \vec{f}(\vec{r},t)/\rho_o$ and: $\vec{f}_{net}(\vec{r},t) = \vec{f}(\vec{r},t) = -\vec{\nabla}p(\vec{r},t)$, hence: $\vec{a}(\vec{r},t) = -\vec{\nabla}p(\vec{r},t)/\rho_o$. Recall that (for $|p(\vec{r},t)| \ll 100$ RMS Pascals { SPL $\ll 134$ dB }, the particle acceleration $\vec{a}(\vec{r},t)$ is the time rate of change of the particle velocity $\vec{u}(\vec{r},t)$, *i.e.* $\vec{a}(\vec{r},t) = \partial \vec{u}(\vec{r},t)/\partial t$, hence we obtain Euler's equation for inviscid fluid flow, valid for air with $|p(\vec{r},t)| \ll 100$ RMS Pascals { SPL $\ll 134$ dB }:

$$\vec{a}\left(\vec{r},t\right) = \frac{\partial \vec{u}\left(\vec{r},t\right)}{\partial t} = -\frac{1}{\rho_o} \vec{\nabla} p\left(\vec{r},t\right) \quad Q.E.D.$$

"Complexifying" this equation, we have:

$$\vec{\tilde{a}}(\vec{r},t) = \frac{\partial \vec{\tilde{u}}(\vec{r},t)}{\partial t} = -\frac{1}{\rho_o} \vec{\nabla} \tilde{p}(\vec{r},t)$$

Although this relationship between the complex particle acceleration $\vec{a}(\vec{r},t)$, particle velocity $\vec{u}(\vec{r},t)$ and complex pressure $\tilde{p}(\vec{r},t)$ was derived in the co-moving/center-of-mass reference frame associated with the infinitesimal volume element V_o centered on the space-time point (\vec{r},t) , superimposed on top of a <u>static</u> pressure field $p_{atm} = 1.013 \times 10^5 Pascals$, it can be seen that for <u>small</u>, <u>harmonic/periodic</u> over-pressure amplitude variations, *e.g.* $\tilde{p}(\vec{r},t) = \tilde{p}_o(\vec{r})e^{iot}$ with $|\tilde{p}(\vec{r},t)| \ll p_{atm}$ that each of these quantities are the same in the laboratory reference frame.

We can now also see that the complex particle <u>displacement</u> $\tilde{\xi}(\vec{r},t)(m)$ {from equilibrium position}, complex particle <u>velocity</u> $\vec{u}(\vec{r},t) = \partial \vec{\xi}(\vec{r},t)/\partial t (m/s)$ and complex particle <u>acceleration</u> $\vec{a}(\vec{r},t) = \partial \vec{u}(\vec{r},t)/\partial t (m/s^2)$ are associated with the <u>collective</u>, random-thermal energy-averaged-out motion of the air molecules contained within the infinitesimal volume element V_o bounded by the {co-moving} surface S_o centered on the space-time point (\vec{r},t) .