Thus, finally we see that:

$$\begin{aligned} \left| \tilde{Z}_{tot} \right|^2 &= \left| \tilde{Z}_1 \right|^2 + \tilde{Z}_1 \cdot \tilde{Z}_2^* + \tilde{Z}_2 \cdot \tilde{Z}_1^* + \left| \tilde{Z}_2 \right|^2 \\ &= \left| \tilde{Z}_1 \right|^2 + \left| \tilde{Z}_2 \right|^2 + \left(\tilde{Z}_1 \cdot \tilde{Z}_2^* + \tilde{Z}_2 \cdot \tilde{Z}_1^* \right) \\ &= \left| \tilde{Z}_1 \right|^2 + \left| \tilde{Z}_2 \right|^2 + 2 \operatorname{Re} \left\{ \tilde{Z}_1 \cdot \tilde{Z}_2^* \right\} \end{aligned}$$

If we now insert the explicit expressions for complex $\tilde{Z}_1(\vec{r},t) = A_1(\vec{r},t)e^{i(\omega_1(t)t+\omega_1(t))}$ and $\tilde{Z}_2(\vec{r},t) = A_2(\vec{r},t)e^{i(\omega_2(t)t+\omega_2(t))}$ in the above formula:

$$\begin{aligned} \left| \tilde{Z}_{tot} \right|^2 &= A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cos\left[\left(\omega_1 t + \varphi_1 \right) - \left(\omega_2 t + \varphi_2 \right) \right] \\ &= A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cos\left[\left(\omega_1 t - \omega_2 t \right) + \left(\varphi_1 - \varphi_2 \right) \right] \\ &= A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cos\left[\left(\omega_1 - \omega_2 \right) t + \left(\varphi_1 - \varphi_2 \right) \right] \end{aligned}$$

Let us now define $\Delta \omega_{12}(t) \equiv (\omega_1(t) - \omega_2(t))$ and $\Delta \varphi_{12}(\vec{r}, t) \equiv (\varphi_1(\vec{r}, t) - \varphi_2(\vec{r}, t))$. Then we see that:

$$\left|\tilde{Z}_{tot}\right|^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1} \cdot A_{2} \cos\left[\Delta\omega_{12}t + \Delta\varphi_{12}\right]$$

If the frequencies of the two complex amplitudes are equal, then $\Delta \omega_{12}(t) \equiv (\omega_1(t) - \omega_2(t)) = 0$ and thus:

$$\left|\tilde{Z}_{tot}\right|^2 = A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cos \Delta \varphi_{12}$$

Note that this expression is simply the formula for the <u>law of cosines</u> associated with a triangle lying in the complex plane! The <u>phasor diagram</u> associated with the two complex amplitudes $\tilde{Z}_1(\vec{r},t) = A_1(\vec{r},t)e^{i(\omega_1(t)t+\varphi_1(\vec{r},t))}$ and $\tilde{Z}_2(t) = A_2(t)e^{i(\omega_2(t)t+\varphi_2(\vec{r},t))}$ and their resulting overall amplitude $\tilde{Z}_{tot}(t)$ in the complex plane is shown in the figure below, for t = 0.

Note that as time *t* increases, the phasor triangle diagram rotates <u>counter-clockwise</u> in the complex plane – and also potentially in a quite complicated manner, *e.g.* if $\omega_1(t) \neq \omega_2(t)$.

For any complex quantity $\tilde{Z}(\vec{r},t) = X(\vec{r},t) + iY(\vec{r},t)$, the phase angle $\varphi(\vec{r},t)$ relative to the real axis (*i.e.* the *x*-axis) in the complex plane is given by the simple trigonometric formula: tan $\varphi = Y/X$ or: $\varphi(t) = \tan^{-1}(Y/X)$.