We can (always) redefine the phase variable φ such that *e.g.* $\varphi \Rightarrow (\omega t + \varphi)$, it can then be seen that:

$$
\tilde{Z}(t) = \left|\tilde{Z}(t)\right| \left(\cos\left(\omega t + \varphi\right) + i\sin\left(\omega t + \varphi\right)\right)
$$

with real component: $X(t) = \text{Re}\{\tilde{Z}(t)\} = |\tilde{Z}(t)|\cos(\omega t + \varphi)$ and imaginary component: $Y(t) = \text{Im}\{\tilde{Z}(t)\} = |\tilde{Z}(t)|\sin(\omega t + \varphi)$.

Note that at the zero of time $t = 0$, these relations are identical to the above.

If (for simplicity's sake) we take the phase angle $\varphi = 0$, then: $\tilde{Z}(t) = |\tilde{Z}(t)|(\cos(\omega t) + i \sin(\omega t)).$ At time $t = 0$, it can be seen that the complex variable $\tilde{Z}(t = 0) = X(t = 0) = |\tilde{Z}(t = 0)|$ is a purely real quantity, lying entirely along the *x*-axis, since $\tilde{Z}(t=0) = |\tilde{Z}| \cos 0 = |\tilde{Z}(t=0)|$. As time *t* progresses, it can be seen that the complex variable $\tilde{Z}(t) = |\tilde{Z}(t)|(\cos(\omega t) + i \sin(\omega t))$ rotates in a *counter-clockwise* direction in the complex plane with constant angular frequency $\omega = 2\pi f$ radians/second, where f is the frequency (in cycles/second {cps}, or Hertz {= Hz}) completing one revolution in the complex plane every $\tau = 1/f = 2\pi/\omega$ seconds {the variable τ is known as the period of oscillation, or period of vibration}. This rotation of $\tilde{Z}(t)$ in the complex plane can also be seen from the time evolution of the phase:

$$
\varphi(t) = \tan^{-1}\left(\frac{Y(t)}{X(t)}\right) = \tan^{-1}\left(\frac{\Delta x(t)}{\Delta x}\right) \sin \omega t / \Delta x(t) \cos \omega t = \tan^{-1}\left(\tan \omega t\right) = \omega t.
$$

Complex Exponential Notation:

 The famous mathematician-physicist Leonhard Euler $\int e^{i\varphi} = \cos \varphi + i \sin \varphi$ showed that for any real number φ , that $e^{i\varphi} = \cos \varphi + i \sin \varphi$. This is known as Euler's formula. Geometrically, the locus of points described by $e^{i\varphi}$ for $0 \le \varphi \le 2\pi$ lie on the <u>unit circle</u> $\sin \varphi$ (i.e. radius $|e^{i\varphi}| = 1$) in the complex plane, centered at (0,0) as shown in the figure on the right. Note that if $\overline{0}$ $\cos \varphi$ $e^{i\varphi} = \cos \varphi + i \sin \varphi$, then $(e^{i\varphi})^* = e^{-i\varphi} = \cos \varphi - i \sin \varphi$. Re We can thus write any "generic" complex quantity $\tilde{Z} = |\tilde{Z}|(\cos \varphi + i \sin \varphi)$ as $\tilde{Z} = |\tilde{Z}|e^{i\varphi}$ and write its complex conjugate $\tilde{Z}^* = |\tilde{Z}| (\cos \varphi - i \sin \varphi)$ as $\tilde{Z}^* = |\tilde{Z}| e^{-i\varphi}$. Note that: $\tilde{Z}\tilde{Z}^* = (|\tilde{Z}|e^{i\varphi}) \cdot (|\tilde{Z}|e^{-i\varphi}) = |\tilde{Z}|^2 e^{i\varphi} \cdot e^{-i\varphi} = |\tilde{Z}|^2 e^{i\varphi - i\varphi} = |\tilde{Z}|^2 e^{i\varphi} = |\tilde{Z}|^2 \cdot 1 = |\tilde{Z}|^2$ Note further that since $e^{i\varphi} = \cos \varphi + i \sin \varphi$ and $e^{-i\varphi} = \cos \varphi - i \sin \varphi$, adding and subtracting these two equations from each other, it is easy to show that $\cos \varphi = \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right)$ and $\sin \varphi = \frac{1}{2i} \left(e^{i\varphi} - e^{-i\varphi} \right)$.

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.