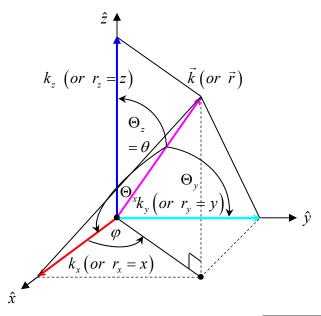
In order to describe monochromatic traveling plane waves propagating in an <u>arbitrary</u> direction in 3-D space, in analogy to the 3-D position vector $\vec{r} = r_x \hat{x} + r_y \hat{y} + r_z \hat{z} = x\hat{x} + y\hat{y} + z\hat{z}$, we introduce the concept of a <u>wavevector</u> $\vec{k} = k_x \hat{x} + k_y \hat{y} + k_z \hat{z}$. The wavevector \vec{k} is an important physical quantity because it tells us the <u>propagation direction</u> of the wave – it is in the $\hat{k} = \vec{k}/|\vec{k}| = \vec{k}/k$ direction. The k_x, k_y, k_z are the components of the wavevector \vec{k} along (*i.e.* <u>projections</u> onto) the $\hat{x}, \hat{y}, \hat{z}$ axes, respectively as shown in the figure below:



The <u>magnitude</u> of the observer's position vector \vec{r} is: $r = |\vec{r}| = \sqrt{\vec{r} \cdot \vec{r}} = \sqrt{r_x^2 + r_y^2 + r_z^2} = \sqrt{x^2 + y^2 + z^2}$. Likewise, the <u>magnitude</u> of the wavevector \vec{k} is: $k = |\vec{k}| = \sqrt{\vec{k} \cdot \vec{k}} = \sqrt{k_x^2 + k_y^2 + k_z^2}$.

The three *x*,*y*,*z*-<u>*direction* <u>cosines</u> associated with the position vector \vec{r} are obtained from dot products (*aka inner products*) of the <u>unit position vector</u> \hat{r} with the \hat{x} , \hat{y} , \hat{z} axes, respectively:</u>

$$\cos \Theta_x \equiv \hat{r} \cdot \hat{x}$$
, $\cos \Theta_y \equiv \hat{r} \cdot \hat{y}$ and $\cos \Theta_z \equiv \hat{r} \cdot \hat{z}$

Since $\vec{r} = r\hat{r}$, then: $\hat{r} = \vec{r}/r = \vec{r}/|\vec{r}| = \vec{r}/\sqrt{x^2 + y^2 + z^2} = x\hat{x} + y\hat{y} + z\hat{z}/\sqrt{x^2 + y^2 + z^2}$.

Thus we see that:

$$\cos \Theta_x \equiv \hat{r} \cdot \hat{x} = x/\sqrt{x^2 + y^2 + z^2} = x/|r| = x/r,$$

$$\cos \Theta_y \equiv \hat{r} \cdot \hat{y} = y/\sqrt{x^2 + y^2 + z^2} = y/|r| = y/r \text{ and}$$

$$\cos \Theta_z \equiv \hat{r} \cdot \hat{z} = z/\sqrt{x^2 + y^2 + z^2} = z/|r| = z/r.$$

Note also that: $|\hat{r} \cdot \hat{r}|^2 = \cos^2 \Theta_x + \cos^2 \Theta_y + \cos^2 \Theta_z = 1$.

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.