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A Special/Limiting Case – Amplitude Modulation: 
 

     Suppose at the observation point r


 in 3-D space that    1 2, ,A r t A r t
   and 1 2f f , then 

the exact expression for the complex total/resultant amplitude: 
 

             
2 2 2

1 2 1 2 12 12, , , , 2 , , cos ,tot totZ r t Z r t A r t A r t A r t A r t t r t          
         

can be approximated, neglecting terms of order     22
2 1, , 1m A r t A r t
    under the radical 

sign, and noting that for 1 2f f , then 1 2  and hence  12 1 2 1       . For simplicity 

in this discussion, we set the phase difference      12 1 2, , , 0r t r t r t     
  

 (its effect is 

merely to shift the overall beats pattern to the left or right along the time axis). Then: 
 

               2

1 2 1 2 1 12 12, , 1 , , 2 , , cos ,totZ r t A r t A r t A r t A r t A r t t r t      
      

  2
1                , 1A r t m

 
 

 
    12 1 12 cos , 1 2 cosm t A r t m t   


 

     Using the Taylor series expansion 1
21 1    for the case 12 cos 1m t   ,  

the magnitude of the total complex amplitude is     1 1, , 1 costotZ r t A r t m t
   . 

 

     The ratio     2 1, , 1m A r t A r t
    is known as the (amplitude) modulation depth 

associated with the high-frequency carrier wave  1 ,Z r t
 , with amplitude    1 2, ,A r t A r t

   

and frequency 1 2f f ,  modulated  by the low frequency wave  2 ,Z r t
 with amplitude  2 ,A r t


 

and frequency 2f . This is the underlying principle of how AM radio works – note that AM stands 

for Amplitude Modulation. In AM radio broadcasting, 1540 1600 carrierKHz f f KHz  
 

 

whereas 220 20 audioHz f f KHz  
 

. 
 

Propagation of Complex Sound Waves in Three Dimensions: 
 

     In previous lectures, we have discussed the propagation of purely real sound waves in one 
dimension, e.g. a monochromatic traveling plane wave propagating in the  x-direction: 
   , cosx t A t kx    where A  is the amplitude of the wave, the wavenumber 

 12  k m   , the wavelength   v f m   and the phase speed of propagation of the 

monochromatic traveling wave in the medium is    v f k m s    , which in “free air” {i.e. 

“The Great Wide Open”} is also equal to the speed of propagation of energy Ev in that medium. 
 

     We can “complexify” the purely real 1-D monochromatic traveling plane wave description(s) 

   , cosx t A t kx    to become complex 1-D monochromatic traveling plane waves simply 

by adding on a purely imaginary term:  siniA t kx  , i.e. complex 1-D monochromatic 

traveling plane waves in the x-direction are mathematically described by: 

        , cos sin i t kxx t A t kx i t kx Ae         . 




