The magnitude of the total complex amplitude, $|\tilde{Z}_{tot}(\vec{r},t)| = |\tilde{Z}_1(\vec{r},t) + \tilde{Z}_2(\vec{r},t)|$ vs. time, t is shown in the figure below for time-independent/constant frequencies of $f_1 = 1000$ Hz and $f_2 = 980$ Hz, equal amplitudes of unit strength, *i.e.* $A_1(\vec{r},t) = A_2(\vec{r},t) = A(\vec{r},t) = A = 1.0$ and zero relative phase, $\Delta \varphi_{12}(\vec{r},t) = 0$:

The beats phenomenon can clearly be seen in the above waveform of the magnitude of the total amplitude $|\tilde{Z}_{tot}(\vec{r},t)| = |\tilde{Z}_1(\vec{r},t) + \tilde{Z}_2(\vec{r},t)|$ vs. time, t. From the above graph, it is obvious that the <u>beat period</u>, $\tau_{\text{beat}} = 1/f_{\text{beat}} = 0.050 \text{ sec} = 1/20^{\text{th}}$ sec, corresponding to a <u>beat frequency</u>, $f_{\text{beat}} = 1/\tau_{\text{beat}} = 20$ Hz, which is simply the frequency difference, $f_{\text{beat}} \equiv |f_1 - f_2|$ between $f_1 = 1000$ Hz and $f_2 = 980$ Hz. Thus, the beat period, $\tau_{\text{beat}} = 1/f_{\text{beat}} = 1/|f_1 - f_2|$. When $f_1 = f_2$, the beat period becomes infinitely long, and thus no beats are heard!

In terms of the phasor diagram, as time progresses the individual amplitudes $\tilde{Z}_1(\vec{r},t)$ and $\tilde{Z}_2(\vec{r},t)$ precess (*i.e.* rotate) <u>counter-clockwise</u> in the complex plane at (angular) rates of $\omega_1 = 2\pi f_1$ and $\omega_2 = 2\pi f_2$ radians per second respectively, completing one revolution in the phasor diagram for each cycle/each period of $\tau_1 = 2\pi/\omega_1 = 1/f_1$ and $\tau_2 = 2\pi/\omega_2 = 1/f_2$, respectively.

12 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.